1. Describe the volume being integrated over, and compute the iterated integral.

(a)
$$\int_0^5 \int_0^{\sqrt{25-x^2}} \int_{\sqrt{x^2+y^2}}^5 z \, dz \, dy \, dx$$
 (b) $\int_0^{2\pi} \int_0^{1+\sin(x)} \int_0^{1+\sin(x)} 2z \, dz \, dy \, dx$

2. Sketch the region of integration for the iterated integral $\int_0^1 \int_x^1 \int_0^{y-x} f \, dz \, dy \, dx$, and express it in the five other possible orders of integration.

SUGGESTIONS: (1) The region being integrated over is a tetrahedron, and it may help to work out its vertices. (2) Besides a 3D sketch, it will also be helpful to sketch the projection of the region on the xy-, xz-, and yz-planes.

3. For each of the following surfaces, find a parameterization, and compute the tangent vectors and normal vectors in terms of that parameterization:

- (a) The graph of f(x, y) = 9 xy over the circle $x^2 + y^2 \leq 9$.
- (b) The part of the sphere $x^2 + y^2 + z^2 = 4$ above the plane z = 1 (i.e., with $z \ge 1$).
- (c) The surface obtained by rotating the line segment connecting (1, 0, 2) to (4, 0, 0) about the z-axis.

4. Let S be the helicoid parameterized by $(v \cos(\theta), v \sin(\theta), \theta)$ with $(\theta, v) \in [0, 4\pi] \times [0, 1]$. A picture of the helicoid is shown at right.

- (a) Find the area of S (equivalently, find $\iint_S 1 \, dS$).
- (b) Find the average value of the function f(x, y, z) = yz over S.

The antiderivative $\int \sqrt{1+u^2} \, du = \frac{1}{2} \left(u \sqrt{1+u^2} + \ln \left(u + \sqrt{1+u^2} \right) \right)$ may be useful in this question.

5. Fix a radius r > 0 and two angles φ_1 and φ_2 , with $-\frac{\pi}{2} \leq \varphi_1 \leq \varphi_2 \leq \frac{\pi}{2}$. Find the surface area of the portion of the sphere of radius r with lattitudes between φ_1 and φ_2 .

