DUE DATE: DEC. 7, 2017

1. Let **c** be the top half of the unit circle, oriented from (-1,0) to (1,0), and **F** be the vector field

$$\mathbf{F}(x,y) = (\ln(x+5) + y^2, 2xy - y^2).$$

Check that $\operatorname{Curl}_2(\mathbf{F}) = 0$ and use the flexibility theorem for curves to compute the integral $\int_{\mathbf{c}} \mathbf{F} \cdot ds$. Flexing the curve to the line joining (-1,0) and (1,0) is a possibility.

2. Let \mathbf{F} be the vector field

$$\mathbf{F}(x, y, z) = (ye^{z^2} - xe^{xy}, ye^{xy} + \tan(z^2 + z + 1), x^2).$$

Check that $\text{Div}(\mathbf{F}) = 0$, and use the flexibility theorem for surfaces to compute $\iint_S \mathbf{F} \cdot dS$ where S is the top half of the unit sphere oriented outwards. ("Flexing" it to the unit disk in the xy-plane seems like a good bet.)

3. Let \mathbf{c}_1 be the top half of the unit circle, oriented counterclockwise, \mathbf{c}_2 be the line segment joining (1,0) to (-1,0), oriented from (1,0) to (-1,0), and let \mathbf{F} be the vector field

$$\mathbf{F}(x,y) = (x^2 - y, xy - \arcsin(y) + e^{y^3}).$$

(a) Use Green's theorem to compute the difference between ∫_{c1} F ⋅ ds and ∫_{c2} F ⋅ ds.
(b) Use (a) to compute ∫_{c1} F ⋅ ds (by computing the easier ∫_{c2} F ⋅ ds, of course...).

4. Questions about differential forms.

(a) Let $f = \sin(xy) - 3xy^2z$. Compute the 1-form df.

It turns out that doing d twice in a row always results in 0. The reason is a combination of "mixed partials commute", and the rules for differentials ("swapping any two dx_i , dx_i changes the sign", and "any repeated dx_i means that the form is zero").

(b) Let α be your answer from (a). Check the claim above by computing the 2-form $d\alpha$. I.e., compute $d\alpha$ and check that it is zero, showing the details.

The d operators fit together to give a diagram

$$\begin{cases} \text{Functions} \\ \mathbb{R}^3 \longrightarrow \mathbb{R} \end{cases} \right\} \xrightarrow{d} \left\{ 1 \text{-forms on } \mathbb{R}^3 \right\} \xrightarrow{d} \left\{ 2 \text{-forms on } \mathbb{R}^3 \right\} \xrightarrow{d} \left\{ 3 \text{-forms on } \mathbb{R}^3 \right\},$$

where any two in a row is zero.

You have a friend who is does not like differential forms. Fortunately you have a great idea on how to help them. You think : "A 1-form is something that looks like $F_1 dx + F_2 dy + F_3 dz$, where F_1 , F_2 , and F_3 are functions on \mathbb{R}^3 . Another way to keep track of three different functions is a vector field $\mathbf{F} = (F_1, F_2, F_3)$ with three different components. I'll tell my friend to forget about 1-forms, and explain everything using vector fields."

For instance, given a function f, you know that $df = f_x dx + f_y dy + f_z dz$. In terms of your (vector field) \leftrightarrow (1-form) dictionary, this is the vector field (f_x, f_y, f_z) . You then tell your friend : "Don't worry about the d operator that takes functions to 1-forms. If you have a function f, d of that is just the vector field (f_x, f_y, f_z) ".

Encouraged by your success with 1-forms, you decide to simplify 2-forms and 3-forms too. A 2-form is also given by three functions, the entries in front of $dx \wedge dy$, $dy \wedge dz$, and $dx \wedge dz$. You decide to match this up with a vector field by declaring that the vector field $\mathbf{G} = (G_1, G_2, G_3)$ corresponds to the 2-form $G_1 dy \wedge dz - G_2 dx \wedge dz + G_3 dx \wedge dy$. [This choice of signs will make more sense after (c) and (d) below.] You also realize that 3-forms are just multiples of $dx \wedge dy \wedge dz$, and so can be described by a single function (e.g., the 3-form $H dx \wedge dy \wedge dz$ would correspond to the function H).

- (c) Using your dictionary, tell your friend how the *d* operator takes 2-forms to 3-forms. I.e., starting with $\mathbf{G} = (G_1, G_2, G_3)$ convert \mathbf{G} to a 2-form by the rule above, apply *d* to that to get a 3-form, and then convert the 3-form back to a function (showing the details of your calculations). What function (in terms of G_1, G_2 , and G_3) do you get?
- (d) Finally, your toughest challenge : explain to your friend how to take d of a 1-form using your dictionary. I.e., start with a vector field $\mathbf{F} = (F_1, F_2, F_3)$, convert it to a 1-form, take d of that 1-form to get a 2-form, and then convert the 2-form back to a vector field \mathbf{G} (all using the rules above). Starting with \mathbf{F} , what is the formula for the vector field \mathbf{G} that results?

This homework assignment is due on or before **Thursday**, **December 7th**, **at 4pm**. The homework should be handed in to the mailbox of either Mike Roth (507 Jeffery Hall), or Kexue Zhang (419 Jeffery Hall).