(a) Use L'Hôpital's rule to show that for any integer $n \geqslant 0, \lim _{u \rightarrow \infty} \frac{u^{n}}{e^{u}}=0$.
(b) Use a substitution and the result of (a) to prove that $\lim _{y \rightarrow \infty} \frac{y^{n}}{e^{y^{2}}}=0$ for any integer $n>0$.

Note that you may have to make a small extra argument when n is odd.
(c) Use a substitution and the result of (b) to prove the lemma from the first day of class: For any integer $n \geqslant 0, \lim _{x \rightarrow 0} \frac{e^{-\frac{1}{x^{2}}}}{x^{n}}=0$.
2. Let

$$
f(x)=\left\{\begin{array}{cc}
e^{-\frac{1}{x^{2}}} & \text { if } x \neq 0 \\
0 & \text { if } x=0
\end{array} .\right.
$$

In class we showed that f was three times differentiable, and using the lemma, proved the formulas

$$
f^{\prime}(x)=\left\{\begin{array}{cc}
\frac{2}{x^{3}} \cdot e^{-\frac{1}{x^{2}}} & \text { if } x \neq 0 \\
0 & \text { if } x=0
\end{array} \quad \text { and } \quad f^{\prime \prime}(x)=\left\{\begin{array}{cc}
\frac{4-6 x^{2}}{x^{0}} \cdot e^{-\frac{1}{x^{2}}} & \text { if } x \neq 0 \\
0 & \text { if } x=0
\end{array} .\right.\right.
$$

(a) Find $f^{\prime \prime \prime}(x)$ when $x \neq 0$.
(b) Find $f^{\prime \prime \prime}(0)$, explaining your steps, and explaining how you use the lemma.
(c) Write a piecewise formula for $f^{\prime \prime \prime}(x)$, similar to the formulas for f, f^{\prime}, and $f^{\prime \prime}$ above.

Now let us prove that $f(x)$ is infinitely differentiable at $x_{0}=0$. We will prove this by induction. To make the induction work, we will need to prove something stronger. We will need to prove :

For each $k \geqslant 0$, there is a polynomial $p_{k}(x)$ so that

$$
f^{(k)}(x)=\left\{\begin{array}{cc}
\frac{p_{k}(x)}{x^{3 k}} \cdot e^{-\frac{1}{x^{2}}} & \text { if } x \neq 0 \tag{*}\\
0 & \text { if } x=0
\end{array}\right.
$$

In particular, f is has a k-th derivative at $x_{0}=0$, equal to 0 .
We have already checked that statement $(*)$ is true when $k=0,1,2$, and 3 .
(d) What are the polynomials $p_{0}(x), p_{1}(x), p_{2}(x)$, and $p_{3}(x)$?
(e) Assuming that $(*)$ is true for $k=n$, use the product and chain rules to show that for $x \neq 0, f^{(n+1)}(x)$ is of the form $\frac{p_{n+1}(x)}{x^{3 n+3}} \cdot e^{-\frac{1}{x^{2}}}$ for some polynomial $p_{n+1}(x)$. You do not have to find a formula for the polynomial, just show that $f^{(n+1)}(x)$ is of that form.
(f) Still assuming that $(*)$ is true when $k=n$, show that $f^{(n+1)}(0)$ exists, and is equal to 0 . Explain carefully how you use the lemma and the inductive hypothesis in this step of the argument.

Thus, by (e) and (f), there is a polynomial $p_{n+1}(x)$ so that

$$
f^{(n+1)}(x)=\left\{\begin{array}{cl}
\frac{p_{n+1}(x)}{x^{3 n}} \cdot e^{-\frac{1}{x^{2}}} & \text { if } x \neq 0 \\
0 & \text { if } x=0
\end{array},\right.
$$

proving the inductive step.
3. Write each of the following complex numbers in the form $a+b i$.
(a) $(2+3 i)(3+4 i)$,
(b) $\frac{2+3 i}{3+4 i}$,
(c) $\frac{1}{1-i}+\frac{1}{1+2 i}+\frac{1}{3+i}$.
(d) Let $a=3+4 i$ and $b=6-7 i$. Find the real and imaginary parts of $a+b i$.
4. One of our descriptions of the complex numbers was as a vector space over \mathbb{R}, with basis $1, i$. Fix a complex number $w=a+b i \in \mathbb{C}$. Let $\varphi: \mathbb{C} \longrightarrow \mathbb{C}$ be the map $\varphi(z)=w z$ (i.e., "multiplication by w ").
(a) Show that φ is an \mathbb{R}-linear map.
(b) Write down the 2×2 matrix for φ with respect to the basis 1 , i.
(c) What does φ do geometrically? [Suggestion: What is the geometric rule for multiplication?]
(d) Suppose that $w=-1+0 \cdot i=-1$. What geometrically does φ do in this case?
(e) Again with φ as in part (d), suppose you wanted to find a linear transformation ψ so that $\psi \circ \psi=\varphi$. What, geometrically, would ψ have to do? Can you find such a ψ ?
(f) Does it seem strange that -1 has a square root? (Part (e) is relevant.)

