1. In this question we will prove that Möbius transformations take lines and circles in $\mathbb{C}$ to lines and circles. (That is : the image of a line may be a line or a circle, and the image of a circle may be a line or a circle.) Recall that in class we have shown that for any $s \in \mathbb{R}, s>0$, and any distinct $w_{1}, w_{2} \in \mathbb{C}$, the set

$$
\begin{equation*}
S=\left\{z \in \mathbb{C}| | z-w_{1}|=s| z-w_{2} \mid\right\} \tag{1.1}
\end{equation*}
$$

is a line if $s=1$, and a circle if $s \neq 1$.
Let $f: \mathbb{C} \longrightarrow \mathbb{C}$ be a function, and $S \subset \mathbb{C}$ a subset. By the notation $f(S)$ we mean

$$
f(S)=\{z \in \mathbb{C} \mid \text { there exists } w \in S \text { with } f(w)=z\}
$$

i.e., the result of putting each element of $S$ into $f$.
(a) Suppose that $f$ is an invertible function. Use the definition above to show that

$$
f(S)=\left\{z \in \mathbb{C} \mid f^{-1}(z) \in S\right\}
$$

Now suppose that $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is an invertible matrix, with $a, b, c, d \in \mathbb{C}$, and let $\mathrm{M}_{A}: \mathbb{P}^{1} \longrightarrow \mathbb{P}^{1}$ be the associated Möbius transformation.
(b) What is the formula for $\mathrm{M}_{A}^{-1}(z)$ ?
(c) Use the formula from (b), the result of (a), and equation (1.1) to write an equation describing those $z$ in $\mathrm{M}_{A}(S)$.
(d) Rewrite the formula in (c) until you end up with an equation of the form

$$
\left|z-u_{1}\right|=t\left|z-u_{2}\right|,
$$

with $u_{1}, u_{2} \in \mathbb{C}$, and $t \in \mathbb{R}, t>0$. In particular, give formulas for $u_{1}, u_{2}$, and $t$ in terms of $w_{1}, w_{2}, s$, and $a, b, c$, and $d$. (Suggestion : a good first step might be to multiply both sides of your answer from (c) by $|-c z+a|$.)

Thus, combining these steps, starting with a set $S$ given by (1.1), we see that

$$
\mathrm{M}_{A}(S)=\left\{z \in \mathbb{C}| | z-u_{1}|=t| z-u_{2} \mid\right\}
$$

By our result from class, the solutions to such an equation is either a line or a circle.
2. In this problem we will check the statements about lines and circles in an example. Let

$$
S=\{z \in \mathbb{C}| | z+2 i|=2| z-i \mid\}
$$

By the result from class, the set $S$ is a circle in $\mathbb{C}$.
(a) Find the radius and centre of $S$.
(b) Pick a point on the circle that you found in (a) and check that it satisfies the equation for $S$.
(c) Find the image of $S$ under the map $\mathrm{M}(z)=\frac{1}{z}$, by finding an equation of the type $"\left|z-u_{1}\right|=t\left|z-u_{2}\right| "$ describing the image.
(d) Is $\mathrm{M}(S)$ a line or a circle in $\mathbb{C}$ ?
3. To visualize a complex function it would be convenient if we could draw the graph. Since the graph is a subset of $\mathbb{C}^{2}$ (which has four real dimensions) this is not possible. The next best thing is to draw some shapes in $\mathbb{C}$ and try and visualize a function $f$ by seeing what happens to those shapes when we apply $f$.

At right is a picture of the lines $\operatorname{Re}(z) \in\{-2,-1,0,1,2\}$ and $\operatorname{Im}(z) \in\{-2,-1,0,1,2\}$ in $\mathbb{C}$, with with the rectangle $\{z \in \mathbb{C} \mid 0 \leqslant \operatorname{Re}(z) \leqslant 1,1 \leqslant \operatorname{Im}(z) \leqslant 2\}$ shaded in.
Draw what happens to this picture under the maps
(a) $f(z)=(1+\sqrt{3} i) z$.
(b) $f(z)=(z-1)^{2}$,
(c) $f(z)=\frac{1}{z-1}$.


Notes: (1) In (a), don't forget the geometric rule for multiplication. (2) The function in (c) is a Möbius transformation.
4. Describe (and draw) the images of the following sets under the map $f(z)=\exp (z)$.
(a) $S=\left\{z \left\lvert\, \frac{\pi}{4} \leqslant \operatorname{Im}(z) \leqslant \frac{2 \pi}{3}\right.\right\}$
(b) $S=\{z \mid 1 \leqslant \operatorname{Re}(z) \leqslant 2\}$.
5. Describe (and draw) the images of the following sets under the map $f(z)=\log (z)$.
(a) $S=\{z \mid \operatorname{Re}(z)>0, \operatorname{Im}(z)>0\}$
(b) $S=\{z|\quad| z \mid \geqslant e\}$.

Note: The function Log is the principal branch of log, based on the principal branch of $\arg$ (i.e, not the multivalued $\log$ ). Note that the set in (b) has a boundary.

