1. Find all values of
(a) 7^{i},
(b) $(\sqrt{3}+i)^{\sqrt{2}}$,
(c) $(1+i)^{\frac{5}{7}}$.

Next,
(d) For complex numbers z and w, is there an upper bound on $\left|z^{w}\right|$ in terms of $|z|$ and $|w|$? Justify your answer.
2. In this question we will prove the chain rule for complex differentiable functions. Suppose that $f: \mathrm{S}_{1} \subseteq \mathbb{C} \longrightarrow \mathbb{C}$ and $g: \mathrm{S}_{2} \subseteq \mathbb{C} \longrightarrow \mathbb{C}$ are functions, with $f\left(\mathrm{~S}_{1}\right) \subseteq \mathrm{S}_{1}$. (This last condition is so that the composition $g \circ f$ makes sense.)
Suppose that $z_{0} \in \mathrm{~S}_{1}$, and set $w_{0}=f\left(z_{0}\right)$. Finally, we suppose that that f is (complex) differentiable at z_{0} and that g is (complex) differentiable at w_{0}. We want to show :
$\circ g \circ f$ is differentiable at z_{0}; and

- the derivative at z_{0} is $f^{\prime}\left(g\left(z_{0}\right)\right) \cdot f^{\prime}\left(z_{0}\right)$.

By the definition of the derivative, that means we need to prove that

$$
\lim _{z \rightarrow z_{0}} \frac{g(f(z))-g\left(f\left(z_{0}\right)\right)}{z-z_{0}}=g^{\prime}\left(f\left(z_{0}\right)\right) \cdot f^{\prime}\left(z_{0}\right) .
$$

(This statement includes the facts that the limit exists, and that it is equal to $g^{\prime}\left(f\left(z_{0}\right)\right)$. $f^{\prime}\left(z_{0}\right)$.) The idea of the proof is to write this limit as

$$
\lim _{z \rightarrow z_{0}} \frac{g(f(z))-g\left(f\left(z_{0}\right)\right)}{z-z_{0}}=\lim _{z \rightarrow z_{0}}\left(\frac{g(f(z))-g\left(f\left(z_{0}\right)\right)}{f(z)-f\left(z_{0}\right)}\right) \cdot\left(\frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}\right) .
$$

As $z \rightarrow z_{0}$ the second factor on the right hand side goes to $f^{\prime}\left(z_{0}\right)$. And, since $f(z) \rightarrow$ $f\left(z_{0}\right)$ as $z \rightarrow z_{0}$, surely the first factor goes to $g^{\prime}\left(f\left(z_{0}\right)\right)$.
To make this precise, we introduce the following function on S_{2} :

$$
h(w)=\left\{\begin{array}{cl}
\frac{g(w)-g\left(w_{0}\right)}{w-w_{0}}-g^{\prime}\left(w_{0}\right) & \text { if } w \neq w_{0} \\
0 & \text { if } w=w_{0}
\end{array}\right.
$$

(a) Write down what it means (i.e, the limit definition) for " g to be differentiable at w_{0} with derivative the number $g^{\prime}\left(w_{0}\right)$ ".
(b) Show that h is continuous at w_{0}. (SugGestion: part (a) is relevant.)

From Math/Mthe 281 we know that if a function is continuous at a point, then we can exchange limits and composition. In particular, since h is continuous at w_{0}, and since $\lim _{z \rightarrow z_{0}} f(z)=f\left(z_{0}\right)=w_{0}$, we know that

$$
\lim _{z \rightarrow z_{0}} h(f(z))=h\left(f\left(z_{0}\right)\right)=h\left(w_{0}\right)=0 .
$$

(c) Give a brief justification of each of the equalities in the above equation. (E.g., which one depends on the continuity of h ?)
(d) Show that (when $z \neq z_{0}$):

$$
\frac{g(f(z))-g\left(f\left(z_{0}\right)\right)}{z-z_{0}}=\left(h(f(z))+g^{\prime}\left(w_{0}\right)\right) \cdot\left(\frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}\right) .
$$

(e) By taking the limit in (d), show that

$$
\lim _{z \rightarrow z_{0}} \frac{g(f(z))-g\left(f\left(z_{0}\right)\right)}{z-z_{0}}=g^{\prime}\left(f\left(z_{0}\right)\right) \cdot f^{\prime}\left(z_{0}\right)
$$

proving the chain rule.
3. For each of the following functions, describe the domain where they are defined and compute their derivatives. (You can use the derivative rules - there is no need to differentiate the functions using the limit definition.)
(a) $f(z)=z^{3}-z e^{z^{2}}-4$.
(b) $g(z)=\left(z+\frac{1}{z}\right)^{10}$.
(c) $h(z)=\frac{z^{2}}{e^{z}-2}$.
(d) $\mathrm{M}(z)=\frac{a z+b}{c z+d}($ with $a d-b c \neq 0)$.

