1. In this problem we will use path cancellation and an elementary homotopy to see more on how Cauchy's theorem helps us to compute integrals. Let $f_{1}(z)=\frac{2}{z-i}, f_{2}(z)=\frac{3}{z+i}$, and $f(z)=f_{1}(z)+f_{2}(z)$.
(a) What is the largest domain on which f_{1} is holomorphic?
(b) What is the largest domain on which f_{2} is holomorphic?

Let γ_{1} be the circle of radius $\frac{1}{4}$ centered at $-i$, oriented counterclockwise, and γ_{2} the circle of radius $\frac{1}{4}$ centered at i, also oriented counterclockwise. Use Cauchy's theorem, version I, or H6, Q4 to answer (c)-(f) below.
(c) What is $\int_{\gamma_{1}} f_{1}(z) d z$?
(d) What is $\int_{\gamma_{1}} f_{2}(z) d z$?
(e) What is $\int_{\gamma_{2}} f_{1}(z) d z$?
(f) What is $\int_{\gamma_{2}} f_{2}(z) d z$?
Let γ be the circle of radius 3 centered at 0 , oriented counterclockwise, and consider the homotopy suggested by the diagram at above right :

(g) Use Cauchy's theorem, version III, and path cancellation to explain why

$$
\int_{\gamma} f(z) d z=\int_{\gamma_{1}} f(z) d z+\int_{\gamma_{2}} f(z) d z
$$

(h) Use (c)-(g) to deduce $\int_{\gamma} f(z) d z$.
2. Use Cauchy's integral theorem (and the version for derivatives) to solve each of the following integrals without explicitly integrating.
(a) $\frac{1}{2 \pi i} \int_{|z|=1} \frac{\exp (3 z)}{z^{2}} d z$
(b) $\int_{|z|=3} \frac{\sin (z)}{z^{4}}+\frac{\exp (z)}{z-2} d z$
(c) $\int_{|z|=2} \frac{1}{z(z-5)^{2}} d z$
(d) $\int_{|z-4|=2} \frac{1}{z(z-5)^{2}} d z$

Note: Leading factors (like $\frac{k!}{2 \pi i}$) may have to be adjusted to make the integrals above fit the exact statement of the integral theorems. All contours should be taken counterclockwise.
3. Let g be the function $g(w)=w^{4}, \gamma$ the top half of the unit circle oriented counterclockwise, and define the function $\mathrm{G}(z): \mathbb{C} \backslash \gamma \longrightarrow \mathbb{C}$ by

$$
\mathrm{G}(z)=\frac{1}{2 \pi i} \int_{\gamma} \frac{g(w)}{w-z} d w
$$

(a) Compute G(0).
(b) Compute $\mathrm{G}^{(4)}(0)$.
(c) Are the functions G and g equal on $\mathbb{C} \backslash \gamma$?
4. Let f be an entire function, $z_{0} \in \mathbb{C}$ a fixed point, and γ a circle of some radius around z_{0}. Assuming:
(i) Cauchy's integral theorem, i.e., that

$$
f(z)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(w)}{w-z} d w
$$

for all z inside of γ, and
(ii) that we can exchange differentiation and integration, (i.e., that we can differentiate under the integral sign),
use induction to prove Cauchy's integral formula for derivatives:

$$
f^{(k)}(z)=\frac{k!}{2 \pi i} \int_{\gamma} \frac{f(w)}{(w-z)^{k+1}} d w
$$

for all z inside of γ and all $k \geqslant 0$.
5. Let n be a positive integer. We say that a function f has polynomial growth of order at most n if there are positive constants $a, b \in \mathbb{R}$ such that $|f(z)| \leqslant b+a|z|^{n}$ for all $z \in \mathbb{C}$. Show that if f is an entire function of polynomial growth of order at most n then f is a polynomial of degree at most n.

Note: The case $n=0$ is Liouville's theorem, and perhaps the proof of that theorem can be modified to cover the more general version above.

