1. In this question we will use a Laurent expansion to find an infinite series for π.
(a) Find the Laurent series expansion for $\frac{1}{1+z^{2}}$ valid on the annulus $\mathrm{A}_{1, \infty}(0)$.

Suggestion: Rewrite $\frac{1}{1+z^{2}}$ in such a way so that you can expand part of it as a geometric series with ratio $-\frac{1}{z^{2}}$.
(b) By antidifferentiating the answer from (a), find a Laurent series valid on $|z|>1$ which agrees with arctan on the positive real axis. (The only thing not determined by the integration is the constant term. However, as $z \rightarrow \infty$ on the positive real axis, you know how arctan behaves, and this will determine the constant).
(c) Use your answer from (b), the fact that $\arctan (\sqrt{3})=\frac{\pi}{3}$ and that $\sqrt{3}>1$ to find an infinite series for $\frac{\pi}{6}$. (The switch from $\frac{\pi}{3}$ to $\frac{\pi}{6}$ comes by combining the answer with the constant term.) Multiply this answer by 6 to find an infinite series for π.

Note: I know of no good use for the series expression in (c), but it is a formula for π that you probably haven't seen before.
2. Let $f(z)=\sum_{n=-\infty}^{\infty} z^{n}$. The purpose of this question is to show that f is the zero function in two different ways, and then show why both of these arguments are wrong.
(a) Multiply the series for f by $z-1$ and rewrite as a Laurent series (i.e., collect powers of z) to show that $(z-1) \cdot f(z)=0$. Since $z-1$ is zero only at 1 this means that $f(z)$ must be zero at all other $z \in \mathbb{C}$. By continuity this means that f must be zero at 1 as well.
(b) Using the formula for a geometric series, show that $\frac{1}{1-z}=1+z+z^{2}+\cdots$. Similarly, writing $\frac{1}{z-1}$ as $\frac{1}{z} \cdot \frac{1}{1-\frac{1}{z}}$, show that $\frac{1}{z-1}$ can be expanded as a series in $\frac{1}{z}$. Add these two answers to conclude again that $f(z)=0$.
(c) The conclusions in (a) and (b) say that f is the zero function. But Laurent expansions are supposed to be unique, and surely the expansion of the zero function is just $0=\sum_{n=-\infty}^{\infty} 0 \cdot z^{n}$, so this seems to be a contradiction. Explain what went wrong in parts (a) and (b).
3. Let f be a nonzero function, holomorphic on a disc $\mathrm{D}_{\rho}\left(z_{0}\right)$, and

$$
f(z)=\sum_{n \geqslant 0} a_{n}\left(z-z_{0}\right)^{n}
$$

its Taylor series expansion.
Parallel to the idea of a pole, we say that f has a zero of order k at z_{0} if $a_{m}=0$ for all $m<k$, and if $a_{k} \neq 0$. In this problem we will establish some basic facts about this notion.
(a) What is the order of zero of $e^{z^{3}}-1$ at $z_{0}=0$? (Note : $e^{z^{3}}$ means $e^{\left(z^{3}\right)}$, not $\left.\left(e^{z}\right)^{3}\right)$.
(b) Show the following equivalent characterization of the order of zero : f has a zero of order k at z_{0} if and only if $f^{(m)}\left(z_{0}\right)=0$ for all $0 \leqslant m<k$, and $f^{(k)}\left(z_{0}\right) \neq 0$. (Suggestion : Use the formula for the coefficients a_{n} for a Taylor expansion.)
(c) Prove the following result, similar to our result about representing functions with a pole of order k.

Lemma. Let f be a nonzero function, holomorphic in a neighbourhood of z_{0}. Then f has a zero of order k at z_{0} if and only if f can be written as $f(z)=\left(z-z_{0}\right)^{k} g(z)$ where g is holomorphic in a neighbourhood of z_{0} and $g\left(z_{0}\right) \neq 0$.
(d) Show that there is an disc $\mathrm{D}_{r}\left(z_{0}\right)$ contained in $\mathrm{D}_{\rho}\left(z_{0}\right)$ so that $f(z) \neq 0$ for all $z \in \mathrm{D}_{r}\left(z_{0}\right), z \neq z_{0}$. I.e., show that the zeros of a nonzero holomorphic function are isolated. (Suggestion : Use (c). Since $g\left(z_{0}\right) \neq 0$, by continuity this must be true in some neighbourhood of z_{0}, and you understand the zeros of $\left(z-z_{0}\right)^{k}$.)
(e) Suppose that f_{1} and f_{2} are nonzero functions, holomorphic in a neighbourhood of z_{0}, with zeros at z_{0} of orders k_{1} and k_{2} at respectively. Show that $f_{1}(z) \cdot f_{2}(z)$ has a zero of order $k_{1}+k_{2}$ at z_{0}. (Suggestion : Use (c) or (b). Using (c) is easier.)
4. Fix $k \geqslant 1$, and let $f(z)=\frac{1}{(1-z)^{k}}$. Let γ be a circle of radius $\frac{1}{2}$ around 0 , oriented counterclockwise. Find a formula (in n and k) for

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f(w)}{w^{n+1}} d w
$$

where $n \geqslant 0$.
(Suggestion : Combine the result of H10 Q2 and the integral formula for a_{n} in a Laurent series expansion.)

