1.

(a) Here are two ways to argue that the function  $p: \mathbb{R}^2 \longrightarrow \mathbb{R}$  given by p(x, y) = x (i.e., p is projection onto the first coordinate) is continuous, where  $\mathbb{R}^2$  and  $\mathbb{R}$  have the standard topologies.

(1) Continuity in the standard topologies is the same as  $\epsilon - \delta$  continuity, and p is a polynomial map, and so certainly  $\epsilon - \delta$  continuous.

(2) Or, to show continuity directly, it is sufficient to show that  $p^{-1}(B_i)$  is open in  $\mathbb{R}^2$ , for each  $B_i$  in a generating set for the topology on  $\mathbb{R}$ . The usual base for the standard topology on  $\mathbb{R}$  is the set of intervals  $\mathcal{B} = \{(a, b) \mid a, b \in \mathbb{R}, a < b\}$ . For such an interval

$$p^{-1}((a,b)) = \left\{ (x,y) \in \mathbb{R}^2 \mid a < x < y \right\},$$

which is an open set in the standard topology in  $\mathbb{R}^2$ . For instance, setting  $\delta = \frac{b-a}{2}$  and  $x_0 = \frac{b+a}{2}$ , this set is the union of the open balls

$$\bigcup_{y \in \mathbb{R}} B_{\delta}(x_0, y).$$

(b) One of the properties of the subspace topology (here the subspace topology on X) is that it makes the inclusion map  $i_X \colon X \hookrightarrow \mathbb{R}^2$  continuous. Therefore  $p \circ i_X$ , being a composition of continuous maps, is also continuous.

(c) The image of  $p \circ i_X$  lies in Y. Therefore we have a factorization (at least as maps of sets) as shown at right. The fin this factorization is the map f of the question. The other property of the subspace topology (here the subspace topol-



ogy on Y) is, as stated in part (c) of the theorem on properties and characterization of the subspace topology, that the map  $X \longrightarrow \mathbb{R}$  being continuous implies that f is continuous. Therefore f is continuous.

(d) To show that g is continuous we need to show for every open set U in X that  $g^{-1}(U)$  is open in Y, or equivalently that for every closed set W in X that  $g^{-1}(W)$  is closed in Y. In general given a map  $g: Y \longrightarrow X$  our notation " $g^{-1}$ " does not refer to the inverse function of g, but rather the associated function  $\mathcal{P}(X) \longrightarrow \mathcal{P}(Y)$ . But, if g happens to be invertible, then this function is the inverse function. (Or, more precisely, it is  $\mathcal{P}_*$  of the inverse function, to use our recent notation from class.)

Thus, (in our situation where g is a bijection with inverse map f) for any subset  $W \subseteq X$ ,  $g^{-1}(W) = f(W)$ . Therefore finding  $W \subseteq X$  which is closed in X such that f(W) is not closed in Y will show that g is not continuous.



(e) Let Z be the line  $Z = \{(x, 1) \mid x \in \mathbb{R}\} \subseteq \mathbb{R}^2$ . The set Z is closed in the standard topology. Therefore  $Z \cap X$  is a closed subset of X in the subspace topology.

The set of solutions to  $\cos(z) = 1$  are  $z \in \{2\pi k \mid k \in \mathbb{Z}\}$ . The solutions z with the property that  $x = \frac{1}{z} \in [-1, 1]$  are those where  $k \neq 0$ . Therefore

$$X \cap Z = \left\{ \left(\frac{1}{2\pi n}, 1\right) \mid n \in \mathbb{Z}, \ n \neq 0 \right\} = W$$

is a closed subset of X.

(f) With W as above, the set

$$f(W) = \left\{ \frac{1}{2\pi k} \, \Big| \, k \in \mathbb{Z}, \, k \neq 0 \right\}$$

is not closed in Y. Let  $V = C_Y f(W)$  be its complement. Then  $0 \in V$  but there is no interval around 0 which is completely contained in V. For instance, for any small interval  $(-\epsilon, \epsilon)$  (with  $\epsilon > 0$ ) around 0, if we pick  $k > \frac{1}{2\pi\epsilon}$ ,  $k \in \mathbb{N}$ , then  $\frac{1}{2\pi k} \in (-\epsilon, \epsilon)$  while at the same time  $\frac{1}{2\pi k} \in f(W)$ , and so not in V.

Thus V is not open, and so f(W) is not closed. Therefore g is not a continuous map.

2.

- (a) (a1)  $\overline{A}$  is the intersection of closed sets, and therefore closed.
  - (a2) Every set Z we are intersecting contains A (it is one of the conditions on Z). Therefore

$$A \subseteq \bigcap_{\substack{A \subseteq Z \\ Z \subseteq X \text{ closed}}} Z = \overline{A}$$

- (a3) If W is closed, and  $A \subseteq W$ , then W is on the list of closed subsets (the "Z"'s) we are intersecting to get  $\overline{A}$ . Therefore  $\overline{A} \subseteq W$ .
- (b) Since Z is closed and contains A (i.e., (b1)+(b2)), we have by (a3) that  $\overline{A} \subseteq Z$ . On the other hand,  $\overline{A}$  is a closed set containing A, and therefore by (b3)  $Z \subseteq \overline{A}$ . Together these give  $Z = \overline{A}$ .
- (c) By (a2)  $V \subseteq \overline{V}$ . Since V is a closed set containing V, by (a3) we have  $\overline{V} \subseteq V$ . (I.e., setting W = V, W is a closed set containing V and so  $\overline{V} \subseteq W$ . Since W = V this is  $\overline{V} \subseteq V$ .) Therefore  $\overline{V} = V$ .
- (d) Let  $V = \overline{A}$ . Then V is closed, and so by (c)  $\overline{V} = V$ . Substituting in  $V = \overline{A}$ , this is  $\overline{\overline{A}} = \overline{A}$ .



- (e) Since  $\overline{A}$  and  $\overline{B}$  are each closed, and the union of a finite number of closed sets is closed,  $\overline{A} \cup \overline{B}$  is closed.
- (f) Since  $A \subset \overline{A}$  and  $B \subset \overline{B}$ ,  $A \cup B \subseteq \overline{A} \cup \overline{B}$ .
- (g) Since  $\overline{A} \cup \overline{B}$  is a closed set containing  $A \cup B$ , by (a3) we have  $\overline{A \cup B} \subseteq \overline{A} \cup \overline{B}$ .
- (h) We have  $A \subseteq A \cup B \stackrel{\text{\tiny (a2)}}{\subseteq} \overline{A \cup B}$ , so  $A \subseteq \overline{A \cup B}$ .
- (i) Since  $\overline{A \cup B}$  is a closed set containing A, by (a3) we have  $\overline{A} \subseteq \overline{A \cup B}$ . Symmetrically, we have  $\overline{B} \subseteq \overline{A \cup B}$ .
- (j) Since  $\overline{A}$  and  $\overline{B}$  are both subsets of  $\overline{A \cup B}$ ,  $\overline{A} \cup \overline{B} \subseteq \overline{A \cup B}$ .
- (k) Combining (g) and (j) gives  $\overline{A \cup B} = \overline{A} \cup \overline{B}$ .

