1.

(a) Let $\mathcal{B} \subseteq \mathcal{P}(X)$ be a subset. The criterion that \mathcal{B} be a base for the topology it generates is that the intersection of any two members of \mathcal{B} be a union of elements of β . In this case, the set β satisfies a stronger property : the intersection of two elements of β is (if nonempty) an element of β – no further union necessary.

There are three ways that two subsets of the form $[a_1, b_1), [a_2, b_2]$ can intersect :

In the first case, the intersection is empty, but in the second two the intersection is again of the form $[a_3, b_3)$, and so an element of β .

(b) Given (a, b) with $a < b$, choose $n_0 > 0$ large enough so that $a + \frac{1}{n_0}$ $\frac{1}{n_0}$ < b. Then

$$
(a,b) = \bigcup_{n \ge n_0} [a + \frac{1}{n}, b),
$$

and so (a, b) is an open set in the topology τ_s .

(c) The complement of $[a, b)$ is $(-\infty, a) \cup [b, \infty)$. Since

$$
(-\infty, a) = \bigcup_{n \in \mathbb{N}, n > 0} [a - n, a) \text{ and } [b, \infty) = \bigcup_{n \in \mathbb{N}, n > 0} [b, a + n),
$$

the sets $(-\infty, a)$ and $[b, \infty)$ are open in τ_s , since each is a union of sets in \mathcal{B} .

Therefore $(-\infty, a) \cup [b, \infty)$ is open in τ_s , and so $[a, b)$ closed.

(d) The complement of $\{x_0\}$ is $(-\infty, x_0) \cup (x_0, \infty)$. The set $(-\infty, x_0)$ is open by the argument from (c), and similarly since x_0, ∞ is open by (c), the set

$$
(x_0, \infty) = \bigcup_{n \in \mathbb{N}, n > 0} [x_0 + \frac{1}{n}, \infty)
$$

is open in τ_s . Therefore $\{x_0\}$ is a closed set.

- (e) However, the set $\{x_0\}$ is not open. B is a base for τ_s , and so a set U is open in τ_s if and only if U is a union of sets in \mathcal{B} . However no set in \mathcal{B} is a subset of $\{x_0\}$ (for instance, every set in B is infinite, and $\{x_0\}$ is finite), and so $\{x_0\}$ cannot be written as a union of elements of B. I.e., $\{x_0\}$ is not an open subset in τ_S .
- (f) In the discrete topology, every subset is both open and closed. Since $\{x_0\}$ is not open, τ_s is not the discrete topology.
- (g) By (d) and (e), $\mathbb{C}_{\mathbb{R}}\{x_0\}$ is a set which is open in τ_s , but not closed. So, not every open set in τ_S is closed.
- (h) Fix $x_0 \in \mathbb{R}$. Then $\{x_0\} = [x_0 1, x_0] \cap [x_0, x_0 + 1]$, and so $\{x_0\}$ is an open set in the topology generated by \mathcal{B}'' . Since $x_0 \in \mathbb{R}$ was arbitrary, this is true for each $x_0 \in \mathbb{R}$. But every set $A \subseteq \mathbb{R}$ is the union

$$
S = \bigcup_{x \in S} \{x\},\
$$

so every set $S \subseteq \mathbb{R}$ is open. Thus the topology generated by \mathcal{B}'' is the discrete topology on R.

2.

- (a) Since $c(\emptyset) = \emptyset$ (by $(K1)$), \emptyset is a closed set.
- (b) By (K2) we have $X \subseteq c(X)$, and since output of c is a subset of X, we have $c(X) \subseteq X$. Therefore $c(X) = X$, and X is a closed set.
- (c) Let Z_1 and Z_2 be closed sets. Then by (K4) we have

$$
c(Z_1 \cup Z_2) = c(Z_1) \cup c(Z_2) = Z_1 \cup Z_2,
$$

where in the last equality we have used the fact that Z_1 and Z_2 are closed. Thus, the union of two closed sets is always closed. By induction it follows that the union of finitely many closed sets is closed.

(d) Writing $B = A \cup D$, by (K4) we have

$$
c(B) = c(A) \cup c(D),
$$

and thus $c(A) \subseteq c(B)$.

- (e) Since W is the intersection of the Z_i , $W \subseteq Z_i$ for each $i \in I$.
- (f) Using (d) we therefore have $c(W) \subseteq c(Z_i) = Z_i$ for each $i \in I$, where in the last equality we have used the fact that Z_i is closed.

- (g) Since $c(W) \subseteq Z_i$ for each i, we have $c(W) \subseteq \bigcap_{i \in i} Z_i = W$.
- (h) by (K2), $W \subseteq c(W)$, and so combined with (g) we get $c(W) = W$.
- (i) Given any $A \subseteq X$, and using the topology determined by the closure operator, we have that $c(\overline{A}) = \overline{A}$ (since \overline{A} is a closed set in this topology) and $A \subseteq \overline{A}$ (property (cl2)). Applying c to this last inclusion, and using $(K2)$ we get $c(A) \subseteq c(A) = A$. On the other hand, by (K3) $c(c(A)) = c(A)$, i.e., $c(A)$ is a closed set, which by (K2) contains A. Since \overline{A} is contained in every closed set which contains A, we have $\overline{A} \subseteq c(A)$. Combined with the previous inclusion this gives $c(A) = \overline{A}$.

NOTE : $(K1)$ is only needed to show (a), and $(K3)$ is only needed to show (i).

