1.

- (a) A pair (W, π) is a quotient of a topological space X by a relation R if it satisfies the following two conditions.
	- (a1) For each $x_1, x_2 \in X$, if $x_1 \sim_R x_2$ then $\pi(x_1) = \pi(x_2)$.
	- (a2) (W, π) is universal with respect to the property (a1): If $f: X \longrightarrow Y$ is a morphism such that $x_1 \sim_R x_2 \implies$ $f(x_1) = f(x_2)$, then there is a unique morphism $g : W \longrightarrow$ Y with the property that $f = g \circ \pi$.

(Note that since we are working in the category of topological spaces, "morphism" means "continuous map".)

(b) Let us say that a morphism $p: X \longrightarrow Y$ has property (*) if

(*) for all
$$
x_1, x_2 \in X
$$
, $x_1 \sim_R x_2 \implies p(x_1) = p(x_2)$.

Given two quotients (W, π) and (W', π') , since $\pi' : X \longrightarrow W'$ has property (*), by the universal property of (W, π) there exists a unique morphism $f: W \longrightarrow W'$ so that $\pi' = f \circ \pi$.

Similarly, since $\pi: X \longrightarrow W$ has property $(*),$ by the universal property of W' there exists a unique morphism $g: W' \longrightarrow W$ so that $\pi = g \circ \pi'$.

Let us now consider the composition $(g \circ f): W \longrightarrow W$. Using the conditions above we see that

$$
(g \circ f) \circ \pi = g \circ (f \circ \pi) = g \circ \pi' = \pi.
$$

But, the identity map $\text{Id}_W : W \longrightarrow W$ is also a morphism from W to W such that Id_W $\sigma \pi = \pi$. Thus both $g \circ f$ and Id_W are solutions to the problem "find a morphism" $p: W \longrightarrow W$ so that $p \circ \pi = \pi$. By the universal property of W, there is a unique such map. Therefore $g \circ f = \text{Id}_W$.

Similarly,

$$
(f \circ g) \circ \pi' = f \circ (g \circ \pi') = f \circ \pi = \pi'.
$$

Since we also have $\text{Id}_{W'} \circ \pi' = \pi'$, we conclude using the universal property of W' that $f \circ q = \text{Id}_{W'}$.

- (a) Since each of the maps $f_1(x) = \cos(2\pi x)$ and $f_2(x) = \sin(2\pi x)$ are continuous maps from R to R, each are also continuous maps from the subspace $[0, 1] \subseteq$ $\mathbb R$ to $\mathbb R$. The universal property of the product then guarantees that the map $f: [0, 1] \longrightarrow \mathbb{R}^2$ given by $f(x) = (f_1(x), f_2(x))$ is continuous. The image of f lies in $S^1 \subseteq \mathbb{R}^2$, and so by the universal property of a subspace, the corresponding map $[0, 1] \longrightarrow S^1$ obtained by restricting the codomain (a map we continue to call f) is also continuous.
- (b) Under this map $f(0) = f(1)$, so by the universal property of the quotient there is a unique continuous map $g: X/R \longrightarrow S^1$ so that $f = g \circ \pi$.

 $X/R - \rightarrow S$ 1 π $\left\{\n\begin{array}{c}\n\searrow f\n\end{array}\n\right\}$ g

The surjectivity of g follows from the surjectivity of f and the factorization above. To see the injectivity of g we need to check that $f(x_1) = f(x_2) \implies x_1 \sim_R x_2$. (The direction $x_1 \sim_R x_2 \implies f(x_1) = f(x_2)$ was what we needed to check to use the universal property of X/R to get the morphism g.)

But f is injective when restricted to $(0, 1)$, and no point in $(0, 1)$ is sent to $f(0)$ $(1, 0) = f(1) \in S¹$, So for $x_1 \in (0, 1)$ and $x_2 \in [0, 1]$, $f(x_1) = f(x_2)$ implies that $x_1 = x_2$. The only remaining points $\{0, 1\}$, are equivalent under R. Thus g is also injective.

- (c) Since $g: X/R \longrightarrow S^1$ is a continuous map, τ_Q (the topology on X/R) is finer than τ_S (the topology on S^1).
- (d) A base for the topology on $[0, 1]$ is

$$
\mathcal{B} = \left\{ (a, b) \mid 0 < a < b < 1 \right\} \bigcup \left\{ [0, b) \mid 0 < b < 1 \right\} \bigcup \left\{ (a, 1) \mid 0 < a < 1 \right\}.
$$

Open sets of the form (a, b) are already R-saturated. But, if an open set $U \subset [0, 1]$ contains an element of the base of the form $[0, b)$ then to be R-saturated U must also contain an element of the base of the form $(a, 1]$, and vice-versa. This is the only condition for an open set $U \subseteq [0, 1]$ to be R-saturated (for this relation R).

From this we conclude that a base for τ_Q (in terms of the corresponding Rsaturated subsets) is

$$
\mathcal{B}_R = \left\{ (a, b) \mid 0 < a < b < 1 \right\} \bigcup \left\{ [0, b) \cup (a, 1] \mid a, b \in (0, 1) \right\}
$$

Each of these elements of the base can be realized as pullbacks of open sets in τ_s . Intervals of the form (a, b) are $g^{-1}((2\pi a, 2\pi b))$, where (θ_1, θ_2) refers to the "angular"

interval" in S^1 consisting of those points $(x, y) \in S^1$ whose angles lie between θ_1 and θ_2) (modulo 2π).

An element of the base of the form $[0, b) \cup (a, 1]$, with $a \geq b$, is the pullback $g^{-1}((2\pi a, 2\pi b + 2\pi))$. If $a < b$ then $[0, b) \cup (a, 1] = [0, 1]$, which is the pullback of the open set S^1 .

Thus every element of a base for τ_Q is the pullback of an element in τ_S , and so both topologies are the same.

3.

(a) The equivalence classes are the points $\{(x, 0)\}\,$, $x \in \mathbb{R}$ on the x-axis (each in their own equivalence class), and the horizontal lines $y = b$ for each $b \neq 0$, also distinct equivalence classes if $b_1 \neq b_2$.

(b) The diagram of maps is shown at right. the composition $f = \pi \circ i_Z$ is continuous since each of i_Z and π are continuous.

Each point of Z meets one and only one of the equivalence classes. Each equivalence class of the form $y = b$ ($b \neq 0$) has unique representative $(0, b) \in Z$, and each equivalence class $[(x, 0)]$ (consisting of the single point $(x, 0)$ is contained in Z. Thus the map f is both surjective and injective.

(c) Considering the set $W \subseteq \mathbb{R}^2$, its R-saturation is $\{(x, y) \in \mathbb{R}^2 \mid y \neq 0\}$. This is an open set, but not a closed set. The closure of this set is all of \mathbb{R}^2 . From this we conclude that the only R-saturated closed subset of \mathbb{R}^2 containing W is all of \mathbb{R}^2 , and therefore (under our correspondence between R -saturated subsets of \mathbb{R}^2 and subsets of X/R , the closure of W in X/R is X/R . (Or, under the bijection of Z and X/R , the closure of W in Z is all of Z.)

 \c{X}

π

Z

 i_Z

f

 X/R

(d) Here is a picture of the open ball we start with, its R-saturation (which is open in \mathbb{R}^2 , and the restriction of the R-saturation to Z:

If the open ball is centered at $(0, y_0)$, then the process above corresponds to the sets

$$
\left\{(x,y)\in\mathbb{R}^2\,\Big|\,\sqrt{x^2+(y-y_0)^2}<\delta\right\}\quad\longrightarrow\quad\left\{(x,y)\in\mathbb{R}^2\,\Big|\,|y-y_0|<\delta\right\}\quad\longrightarrow\quad\left\{(0,y)\in\mathbb{R}^2\,\Big|\,|y-y_0|<\delta\right\}.
$$

- (e) Thus, for any $(0, y_0) \in Z$, $y_0 \neq 0$, and any δ such that $0 < \delta < |y|$, the interval $\{(0, y) | |y - y_0| < \delta\}$ is an open set in τ_Q . In particular, this implies that any open set (in the standard topology) on the y-axis not containing $(0, 0)$ is also an open set in τ_Q .
- (f) Here is a picture of the same process as in (d), first starting with an open ball centered on the x-axis which does not contain the origin.

If the open ball is centered at $(x₀, 0)$, then the process above corresponds to the sets

$$
\{(x,y)\in\mathbb{R}^2 \mid \sqrt{(x-x_0)^2+y^2} < \delta\} \longrightarrow \{(x,y)\in\mathbb{R}^2 \mid 0 < |y| < \delta\} \cup \{(x,0) \mid |x-x_0| < \delta\}
$$

$$
V_{\delta} \cup \{(x,0)\in\mathbb{R}^2 \mid |x-x_0| < \delta\},
$$

where, as in the assignment,

$$
V_{\delta} = \left\{ (0, y) \mid 0 < |y| < \delta \right\}.
$$

If the open ball does contain the origin, then the picture is largely the same, with the difference that $(0, 0)$ is now in the resulting open subset of Z, and the subset is connected.

In this case the restriction to Z again has the form

$$
V_{\delta} \cup \left\{ (x,0) \in \mathbb{R}^2 \mid |x - x_0| < \delta \right\}.
$$

(g) The open sets appearing in (e) and (f) form a base for the topology τ_Q (because they form a base for the R-saturated subsets of \mathbb{R}^2). The open sets in (e) contain no point on the x-axis, while the open sets in (f) , each contain a subset of the form V_{δ} with $\delta > 0$.

Thus, if $U \subseteq Z$ is open in τ_Q , and contains a point on the x-axis, it must contain an element of the base of the type from (f), and so contain a subset of the form V_{δ} for some $\delta > 0$.

(h) An open set $U \in \tau_S$ is in τ_Q if and only if it passes the test above : If U contains a point on the x-axis, then U contains a subset of the form V_{δ} , for some $\delta > 0$.

The condition is obviously necessary, in light of (g) . Suppose that this condition is satisfied. If U does not contain any point of the x-axis, then U is a union of open intervals on the y-axis, and hence in τ_Q by (e).

If U does contain points of the x-axis, let $\delta > 0$ be such that $V_{\delta} \subset U$. The restriction of U to the x-axis is a union of intervals, each one of which can be written as a union of intervals of length $\leq \delta$, and hence a union of sets of the form in (f), each one with an associated $V_{\delta'}$ with $\delta' \leq \delta$ and so $V_{\delta'} \subseteq V_{\delta}$.

Therefore the union of these sets is still contained in U , and covers all points of U on the x-axis. The remaining points of U on the y-axis can be covered by open intervals not containing $(0, 0)$, open sets which, by (e), are in τ_Q . Therefore U can be written as a union of sets in τ_Q , and so is itself in τ_Q .

