1.

- (a) Since A is the finite union $A = \bigcup_{i=1}^{n} \{x_i\}$, and since each $\{x_i\}$ is closed, A is closed.
- (b) Let x_i be a point A, and $B = \mathcal{C}_A\{x_i\}$. Then, by (a), B is closed in X, and so $B \cap A = B$ is closed in A. Therefore each subset $\{x_i\}$ is open in A, and so A has the discrete topology.

(c)

- \circ For each $i = 1, \ldots, n, U_i = U'_i \cap V_i$ is the intersection of two open sets, and hence open, while $U_{n+1} = \bigcap_{i=1}^{n} W_i$ is the intersection of finitely many open sets and so also open.
- \circ For each $i = 1, \ldots, n, x_i \in U'_i$ and $x_i \in V_i$, so $x_i \in U'_i \cap V_i$. Similarly for $i = n + 1, x_{n+1} \in W_j$ for each $j = 1, \ldots, n$, so $x_{n+1} \in \bigcap_{j=1}^{n+1} W_j = U_{n+1}$.
- \circ If $i, j \in \{1, \ldots, n\}$ with $i \neq j$ then

$$
U_i \cap U_j = (U'_i \cap V_i) \cap (U'_j \cap V_j) = (U'_i \cap U'_j) \cap V_i \cap V_j = \varnothing \cap V_i \cap V_j = \varnothing,
$$

since $U'_i \cap U'_j = \varnothing$ if $i \neq j$.

On the other hand, if $j = n + 1$ and $i \in \{1, \ldots, n\}$ then

$$
U_i \cap U_{n+1} = (U'_i \cap V_i) \cap \left(\bigcap_{k=1}^n W_k\right) = U'_i \cap (V_i \cap W_i) \cap \left(\bigcap_{\substack{k \in \{1,\ldots,n\} \\ k \neq i}} W_i\right) = \varnothing,
$$

since $V_i \cap W_i = \emptyset$.

This establishes the properties we were claiming.

(d) The proof is by induction.

<u>Base Case $n = 2$ </u>: This is the definition of a Hausdorff space. Given $x_1, x_2 \in X$, $x_1 \neq x_2$ we can find open sets U_1 and U_2 such that $x_1 \in U_1$ and $x_2 \in U_2$ and $U_1 \cap U_2 = \varnothing.$

Inductive Step : Given distinct $x_1, \ldots, x_n \in X$, by induction we may assume we have open sets U'_1, \ldots, U'_n such that $x_i \in U'_i$ for each i, and $U'_i \cap U'_j = \emptyset$ if $i \neq j$.

Given the point x_{n+1} (distinct from x_1, \ldots, x_n), since X is Hausdorff for each $i = 1$, ... *n* there are open sets separating x_{n+1} and each x_i . I.e., for each i there are open sets V_i and W_i with $x_i \in V_i$, $x_{n+1} \in W_i$, and $W_i \cap V_i = \emptyset$.

Applying the construction of part (c) we obtain open sets U_1, \ldots, U_{n+1} with $x_i \in U_i$ for each $i = 1, \ldots, n + 1$, and $U_i \cap U_j$ if $i \neq j$, completing the inductive step.

2.

(a) Suppose that (x_1, y_1) and (x_2, y_2) are two distinct points of $X \times Y$. Then either $x_1 \neq x_2$, or $y_1 \neq y_2$, or both. Suppose that $x_1 \neq x_2$. Then since X is Hausdorff there are open sets $U_1, U_2 \subseteq X$ with $x_1 \in U_1, x_2 \in U_2$ and $U_1 \cap U_2 = \emptyset$.

Then $U_1 \times Y$ and $U_2 \times Y$ are open sets of $X \times Y$, $(x_1, y_1) \in U_1 \times Y$, $(x_2, y_2) \in U_2 \times Y$, and

$$
(U_1 \cap Y) \cap (U_2 \cap Y) = (U_1 \cap U_2) \times Y = \varnothing.
$$

The remaining case is that $x_1 = x_2$ but $y_1 \neq y_2$, in which case a similar argument, pulling back open sets from Y , works.

(b) Since $\Delta_X = \{(x, x) | x \in X\} \subseteq X \times X$, and $q_1(x_1, y_1, x_2, y_2) = (x_1, x_2),$

$$
q_1^{-1}(\Delta_X) = \left\{ (x_1, y_2, x_2, y_2) \mid q(x_1, y_1, x_2, y) \in \Delta_X \right\} = \left\{ (x, y_1, x, y_2) \mid x \in X, y_1, y_2 \in Y \right\}.
$$

Similarly

$$
q_2^{-1}(\Delta_Y) = \left\{ (x_1, y, x_2, y) \mid x_1, x_2 \in X, y \in Y \right\}.
$$

I.e., $q_1^{-1}(\Delta_X)$ is the subset of $X \times Y \times X \times Y$ where the first and third coordinates are equal, and $q_2^{-1}(\Delta_Y)$ is the subset where the second and fourth coordinates are equal. Therefore

$$
q_1^{-1}(\Delta_X) \cap q_2^{-1}(\Delta_Y) = \{(x, y, x, y) \mid x \in X, y \in Y\}
$$

which is (under the identification $(X \times Y) \times (X \times Y) = X \times Y \times X \times Y$) the diagonal $\Delta_{X\times Y}$.

(c) We note that each of q_1 and q_2 are continuous maps.

For instance, the composition $p'_1 \circ p_1$ is the map sending (x_1, y_1, x_2, y_2) to x_1 , and is continuous, and the composition $p_1'' \circ p_2$, which sends (x_1, y_1, x_2, y_2) to x_2 is continuous. Therefore (by the universal property of the product $X \times X$...), the map q_1 obtained from these maps is continuous.

Similarly q_2 is continuous.

If X and Y are Hausdorff then Δ_X and Δ_Y are closed in $X \times X$ and $Y \times Y$ respectively. Since q_1 and q_2 are continuous, $q_1^{-1}(\Delta_X)$ and $q_2^{-1}(\Delta_Y)$ are then closed in $(X \times Y) \times (X \times Y)$.

Since, by (b), $\Delta_{X\times Y} = q_1^{-1}(\Delta_X) \cap q_2^{-1}(\Delta_Y)$, $\Delta_{X\times Y}$ is closed in the product, and therefore $X \times Y$ is Hausdorff.

3.

(a) In **H6 Q3** we have seen that for any point $(0, y_1) \in X/R$ with $y_1 \neq 0$, and any $\delta < |y_1|$, that the set $\{(0, y) | |y - y_1| < \delta\}$ is an open set in X/R . That is, away from $(0, 0)$, the topology of X/R "on the y-axis" is just like the topology of the y-axis in \mathbb{R}^2 , and so the usual arguments work to establish the Hausdorff property. Given y_1, y_2 , with $y_1 \neq y_2$, pick δ to be strictly less than $\min(|y_1|, |y_2|, \frac{|y_2-y_1|}{2})$ $\frac{-y_{1}}{2}$). Then the sets

$$
U_1 = \{(0, y) \mid |y - y_1| < \delta\} \quad \text{and} \quad U_2 = \{(0, y) \mid |y - y_2| < \delta\}
$$

are both open in X/R , and satisfy $y_1 \in U_1$, $y_2 \in U_2$, and $U_1 \cap U_2 = \emptyset$.

(b) As in **H6 Q3**, for each $\delta > 0$ let

$$
V_{\delta} = \left\{ (0, y) \mid 0 < |y| < \delta \right\},\
$$

considered (via the quotient map) as a set in X/R . In the previous homework assignment we have seen that for any point $(x_1, 0) \in X/R$, and any $\delta > 0$ that

$$
\{(x,0) \mid |x-x_1| < \delta\} \cup V_\delta
$$

is an open set in X/R .

Given $(x_1, 0), (0, y_2) \in X/R$, with $y_2 \neq 0$, let $\delta = \frac{|y_2|}{3}$ $rac{y_2}{3}$. Then both

$$
U_1 = \{(x, 0) \mid |x - x_1| < \delta\} \cup V_\delta
$$

and

$$
U_2 = \{(0, y) \mid |y - y_2| < \delta\}
$$

are open sets of X/R . By construction $x_1 \in U_1$ and $y_2 \in U_2$. Finally $U_1 \cap U_2 = \emptyset$, since by choice of δ we know that points of U_2 are at least distance 2δ from $(0, 0)$, while points of U_1 are within distance δ of $(0, 0)$, and so the two sets cannot meet.

(c) However, given $(x_1, 0)$ and $(x_2, 0)$, if U_1 and U_2 are open sets of X/R containing $p(x_1, 0)$ and $(x_2, 0)$ respectively, then by H6 Q3(b), there is a $\delta_1 > 0$ such that $V_{\delta_1} \subseteq U_1$, and a $\delta_2 > 0$ such that $V_{\delta_2} \subseteq U_2$. Therefore $U_1 \cap U_2$ contains at least V_{δ} , where $\delta = \min(\delta_1, \delta_2)$. In particular it is impossible to separate $(x_1, 0)$ and $(x_2, 0)$ by open sets of X/R .

(a) The map π sends $x \in X$ to $\lceil x \rceil$ (the equivalence class of x) in X/R . Therefore

4.

$$
(\pi \times \pi)^{-1}(\Delta_{X/R}) = \left\{ (x_1, x_2) \in X \times X \mid [x_1] = [x_2] \right\} = \left\{ (x_1, x_2) \in X \times X \mid x_1 \sim_R x_2 \right\} = \Gamma_R.
$$

- (b) If X/R is Hausdorff, then $\Delta_{X/R}$ is closed in $(X/R) \times (X/R)$, and therefore $\Gamma_R =$ $(\pi \times \pi)^{-1}(\Delta_{X/R})$ is closed in $X \times X$.
- (c) Let us first suppose that there is a $t \in \mathbb{R}_{>0}$ such that $(x_2, y_2) = (tx_1, ty_1)$ then

$$
\left|\begin{array}{cc} x_1 & y_1 \\ x_2 & y_2 \end{array}\right| = \left|\begin{array}{cc} x_1 & y_1 \\ tx_1 & ty_1 \end{array}\right| = 0
$$

(for instance, since the rows are linearly dependent), $x_1x_2 = t(x_1)^2 \ge 0$, and $y_1y_2 = t(y_1)^2 \geqslant 0.$

Conversely, suppose that $(x_1, y_1), (x_2, y_2) \in \mathbb{R}^2 \setminus \{(0, 0)\},$ and that

$$
\left|\begin{array}{cc} x_1 & y_1 \\ x_2 & y_2 \end{array}\right| = 0.
$$

Since the determinant is zero, the rows are linearly dependent. Linear dependence for two vectors means that one is a scalar multiple of the other (including the possibility that the scalar is zero). But, since neither vector is zero, the scalar cannot be zero, and thus each is a non-zero scalar multiple of the other. In particular, there is a $t \in \mathbb{R}^*$ so that $(x_2, y_2) = t(x_1, y_1)$.

If we now assume the other two conditions $x_1x_2 = t(x_1)^2 \geqslant 0$, and $y_1y_2 = t(y_1)^2 \geqslant$ 0, then adding them gives $t(x_1^2 + y_1^2) \ge 0$. Since $(x_1, y_1) \ne (0, 0)$, $x_1^2 + y_1^2 > 0$, and so we can divide and conclude that $t \geq 0$. Thus, there is $t \in \mathbb{R}_{>0}$ so that $(x_2, y_2) = t(x_1, y_1).$

This shows the equivalence of the given algebraic conditions and R-equivalence in this case.

(d) The subset of $X \times X$ (where $X = \mathbb{R}^2 \setminus \{(0,0)\}\)$ described by the conditions in (c) is a closed subset. Each of the maps

$$
f: X \times X \longrightarrow \mathbb{R}
$$

\n
$$
(x_1, y_1, x_2, y_2) \longrightarrow x_1
$$

\n
$$
g: X \times X \longrightarrow \mathbb{R}
$$

\n
$$
(x_1, y_1, x_2, y_2) \longrightarrow x_1x_2
$$

\n
$$
h: X \times X \longrightarrow \mathbb{R}
$$

\n
$$
(x_1, y_1, x_2, y_2) \longrightarrow y_1y_2
$$

 \mid $\overline{}$ \mid \overline{a}

is continuous. (For instance, each of the coordinate projection maps are continuous, and then one can use the result of H4 Q1(g), applied to $X \times X$.

Thus each of the sets $f^{-1}(\{0\})$, $g^{-1}([0,\infty))$, and $h^{-1}([0,\infty))$ are closed subsets of $X \times X$, since $\{0\}$ and $\overline{[0,\infty)}$ are closed subsets of \mathbb{R} . The subsets $f^{-1}(\{0\}),$ $g^{-1}([0, \infty))$, and $h^{-1}([0, \infty))$ are the solutions to the individual conditions in (c). By (c) the intersection of these conditions is $\Gamma_{\mathbb{R}}$. Therefore $\Gamma_{\mathbb{R}}$ is a closed subset of $X \times X$.

(e) The other piece of $\Gamma_{\mathbb{R}}$ is the subset

$$
\{(x_1, y, x_2, y) \mid x_1, x_2, y \in \mathbb{R}, y \neq 0\}.
$$

Letting $q_2 \colon \mathbb{R}^4 \longrightarrow \mathbb{R}^2$ be the map $q_2(x_1, y_1, x_2, y_2) = (y_1, y_2)$ as in **Q2**, the subset above is $q_2^{-1}(\Delta_{\mathbb{R}}) \cap \{(x_1, y_1, x_2, y_2) \mid y_1, y_2 > 0\}$. That is, the subset above is the intersection of a closed set and an open set.

(f) In this case the subset Γ_R is not closed. Let $x_1, x_2 \in \mathbb{R}$ be any two numbers with $x_1 \neq x_2$. Then for all $n \geqslant 1, n \in \mathbb{N}$, the point $(x_1, \frac{1}{n})$ $\frac{1}{n}, x_2, \frac{1}{n}$ $\frac{1}{n}$) is in the set in (e) above, and so in Γ_R . The limit of this sequence of points (as $n \to \infty$) is $(x_1, 0, x_2, 0)$. This is not in the piece from (e) (since the y-coordinates are zero), and is not in the other piece of Γ_R since $x_1 \neq x_2$. Thus, when $x_1 \neq x_2$, $(x_1, 0, x_2, 0)$ is a point in Γ_R which is not in Γ_R . Thus Γ_R is not closed in $X \times X$.

