Math 347 Homework Assignment 2

DUE DATE: SEPT. 20,

1. Let
\n
$$
X = \left\{ (x, \cos\left(\frac{1}{x}\right)) \mid x \in [-1, 0) \cup (0, 1] \right\} \cup \left\{ (0, 0) \right\},
$$
\n
$$
Y = [-1, 1]
$$

and let $f: X \longrightarrow Y$ be projection onto the first coordinate, i.e., $f(x, y) = x$ for all $(x, y) \in X$.

The map f is a bijection. The inverse map is $g: Y \longrightarrow X$ given by

$$
g(x) = \begin{cases} (x, \cos(\frac{1}{x})) & \text{if } x \neq 0 \\ (0,0) & \text{if } x = 0 \end{cases}
$$

Let X and Y have the subspace topologies, induced from $X \subseteq \mathbb{R}^2$ and $Y \subseteq \mathbb{R}$ respectively, where \mathbb{R}^2 and $\mathbb R$ are given the standard topologies.

In this problem we will show that f is continuous, but g is not continuous. I.e., that even though f is a continuous bijection, f is not a homeomorphism.

- (a) Let $p: \mathbb{R}^2 \longrightarrow \mathbb{R}$ be the map $p(x, y) = x$ (i.e., projection onto the first coordinate). Briefly explain why p is continuous.
- (b) Explain why $p \circ i_X$ is continuous, where $i_X : X \hookrightarrow \mathbb{R}^2$ is the inclusion map.
- (c) Prove that f is continuous.

SUGGESTION : Now might be a good time to use part (c) of the theorem on properties and characterization of the subspace topology. Note that the way that f and g are used in that theorem does not match the way that f and g are used in this problem, so don't confuse them!

Now we will show that q is not continuous.

- (d) Explain why (to show that g is not continuous) it is enough to find a closed set $W \subset X$ such that $f(W)$ is not closed in Y.
- (e) Show that the set $W = \left\{ \left(\frac{1}{2\pi n}, 1 \right) \mid n \in \mathbb{Z}, n \neq 0 \right\}$ is a closed set in X.

SUGGESTION: Maybe W is the intersection of X with a set which is closed in \mathbb{R}^2 (which is how, with the subspace topology, all closed sets arise).

(f) Prove that q is not continuous.

2. In this problem we will establish some of the formal properties of the closure operator. Let (X, τ_X) be a topological space, and $A \subseteq X$ a subset of X. We define A, the *closure* $of A,$ by

$$
\overline{A} = \bigcap_{\substack{A \subseteq Z \\ Z \subseteq X \text{ closed}}} Z.
$$

I.e., \overline{A} is defined to be the intersection of all closed sets Z which contain A.

(a) Explain (or show) why \overline{A} has the following three properties.

- (a) A is closed (as its name suggests!).
- (a2) $A \subseteq \overline{A}$.
- (a3) If W is any closed set with $A \subseteq W$, then $\overline{A} \subseteq W$.

NOTE: These three properties all follow directly from the definition above (and, at one point the axioms for closed sets), and so that is the best way to argue.

- (b) Show that these three properties characterize \overline{A} . I.e., if Z is a set which
	- $(b₁)$ is closed
	- $(b₂)$ contains A, and has the property that
	- (b₃) if W is any closed set with $A \subseteq W$, then $Z \subseteq W$,
	- then $Z = \overline{A}$.

SUGGESTION : Use the conditions to show that $\overline{A} \subseteq Z$ and that $Z \subseteq \overline{A}$.

(c) If $V \subseteq X$ is a closed set, show that $\overline{V} = V$.

SUGGESTION : Consider (a_2) and $(a_3)!$

- (d) For any subset $A \subseteq X$, show that $\overline{A} = \overline{A}$.
- Let $A, B \subset X$ be any two subsets of X.
	- (e) Explain why $\overline{A} \cup \overline{B}$ is closed.
	- (f) Explain why $A \cup B \subseteq \overline{A} \cup \overline{B}$.
	- (g) Show that $\overline{A \cup B} \subseteq \overline{A} \cup \overline{B}$.
	- (h) Explain why $A \subseteq \overline{A \cup B}$.
	- (i) Show that $\overline{A} \subseteq \overline{A \cup B}$. (And so similarly $\overline{B} \subseteq \overline{A \cup B}$.)
	- (i) Show that $\overline{A} \cup \overline{B} \subset \overline{A \cup B}$.
	- (k) Show that $\overline{A \cup B} = \overline{A} \cup \overline{B}$.

NOTE : From (k) (and induction) it follows that the closure operator commutes with any finite union.

