Math 413/813 Answers for Homework 4

1. In this problem we will prove that /(z2(z + 1), z(z+1),y).
(a) Explain why we have the containment (xz(z 4 1),y) C \/{(x%(z + 1),y).

From part (a), in order to show equality it is enough to show the reverse containment.

Let f be any element of \/(z?(x + 1), ).

(b) Explain why we know that there is an n > 1 and polynomials hy, hy € k[z,y| such
that

(b1) "= 2*(z + 1)hy + yho.

(¢) Let ¢: k[z,y] — k[z] be the ring homomorphism given by setting y = 0, and set
f =1(f). Looking at the image of (b1) under 1, and using unique factorization
in the ring k[z], explain why we know that there is a polynomial h3 € k[x] so that

f=z(z+1)hs.
(d) Using part (c), explain why we know that there is a polynomial hy € k[z,y] so
that f — z(x + 1)hy is in the kernel of .
(e) What is the kernel of 7

(f) Complete the problem by showing that f € (z(x +1),y).

Solutions.

(a) Let I = (z%(x + 1),y). We always have the inclusion I C /I, and therefore
since y € I we have y € VI. Set f = x(z + 1). Since f2 = 2?(z + 1)? =
(x +1) - (2*(x + 1)) € I we have f € v/I by definition of v/I. Since both y and
z(z 4 1) are in the ideal v/I, the ideal (z(x + 1),y) is also contained in v/I.

(b) By the definition of the radical if f € v/T there is an n > 1 so that f* € I. Since
I is generated by z%(z + 1) and y this means that there are hy, hy € klx,y] with
" =a*(x + 1)hy + yhs.



(c) Let h; be the image of h; under . Applying ¢ to (b1) we get

(c2) 7 =2z + 1)hy.

Any polynomial in k[z] can be factored as a product of linear factors (or irreducible
factors, if k is not algebraically closed). Since x divides the right hand side of (c2)
it must also divide f", and therefore must divide f. Similarly, since z + 1 divides
the right hand side of (c2) z + 1 must also divide f" and hence also divide f.
Since z and (x + 1) are relatively prime, their product must also divide f. By
definition (of ‘divides’) this means that there is a polynomial hy € k[x] so that

(d) Let hy € k[z,y] be the polynomial hs, now also considered as a polynomial in z,y
(but with no y’s). Then ¢ (hy) = hs, so

U (f = ale + Dha) = w(f) = (e + D(ha) = F = ale + 1hy = 0,
and so f —xz(x + 1)hy € Ker(¢).
(e) The map v corresponds to “restriction to the z-axis”, and has kernel (y).

(f) Since f — z(x + 1)hy € Ker(yp) = (y) there is a polynomial hs € k[x,y] so that
f—x(x + 1)hy = yhs. But then f = z(x + 1)hy + yhs, so that f € (z(x + 1), ).

2. In this problem we will explore other questions about the radical.

(a) Let A be any ring, I C A and ideal, and f € I. Suppose that f = f{* f52--- fer
for some fi,..., f, € A, and some ey, ...e, > 1. Show that fifo--- f, € VI.

(b) Let I C Z be an ideal. We know that every ideal in Z is generated by a single
element, so I = (n) for some n € Z. Assume that n # 0 (i.e, I # (0)) and let
n = pS ---pc be the prime factorization of n. Show that VI = (pips---p,).

(c) Let J; and J; be ideals. Show that J; N Js is also an ideal.
(d) Let I; and I3 be radical ideals. Show that I; N I5 is also a radical ideal.

Math 813 only]  (e) For any f € k[xy,...,z,] let f = fi*--- f& be its factorization into irreducibles,
and define Rad(f) by the formula Rad(f) = f1f2--- f,. Show that if I is a principal
ideal, I = (f), then VI = (Rad(f)).

Math 813 onty] () Give an example of anideal I = (g1, g2) C k[x, y] such that v/T # (Rad(g;), Rad(g2)).
(ONE POSSIBILITY: An ideal with this property has already appeared in class, but
you can make up your own.)



[Math 813 only]

[Math 813 only]

Solution.

(a)

(b)

()

(f)

Let e = max(ey,eg,...,¢.). Then (f1---f,)¢ = fi “fs - fe=ef € I. There-
fore by definition of the radical we must have f;--- f, € VI.

By part (a), p1---p, € VI, so that (p;---p,) € v/I. We now want to show the
opposite containment. Let m be any element of v/I. By definition there is a
positive integer n so that m™ € I = (pf'---p¢). Thus there is a number g so
that m" = g - p7* - - - pS~. But then each of py,..., p, divides m™, so each of py,. ..,
p, must also divide m. Since py,..., p, are relatively prime, this implies that the
product p1ps - - - p, divids m, and therefore that m = u - p; - - - p, for some integer
w. This is the same thing as saying that m € (p;---p,). Since m was arbitrary,
we conclude that VT C (p; ---p,) and hence that VT = (p;---p,).

Set J = J; N Jy. We need to show that J is closed under addition, and that J is
“multiplicatively sticky”.

Suppose that fi, fo € J. By the definition of J this means f; and f; are in each
of I; and I,. Since I; is an ideal we know that f; + fo € I;. Since I, is an ideal
we know that f; + fo € I. Therefore f1 + fo e [ N1y = J.

Similarly, suppose that f € J and that a € A (where A is the ring we are working
in). Since f € I; N I3, we know that f isin I; and I. Since I; is an ideal af € .
Since I is an ideal af € I5. Therefore af € [y NIy = J.

By part (b) I; N I; is an ideal, so the only issue is to show that it is also a radical
ideal. Set J = I; N I, and suppose that f € A, and that f™ € J for some n > 1.
Then we have [ € I; and f™ € I5 by the definition of J. Since both I; and I, are
radical ideals, this implies that f € I; and f € I5. Therefore f € Iy NI, = J, so
J is a radical ideal.

This argument works exactly like the argument in (b): Let f = f{*--- f be the
factorization of f into irreducibles. By part (a) we have fi---f, € /I, so that
(fi---f.) € VI, and we need to show the opposite containment. Suppose that
g € V1. By definition that means that there is an n > 1 so that ¢ € I, so that
g" = hfift--- fer for some h € k[zy,...,z,]. The equation shows that each of
fi,---, fr divides g™, hence since fi,..., f,. are irreducible (and so prime), each of
fi,-.., fr divides g. Since fi,..., f, are relatively prime, the product f; --- f, also
divides g. Therefore g € (f,--- f.), so that VT = (fy--- f.).

Perhaps the easiest example is this: Suppose that k is not of characteristic 2 and
let I be the ideal I = (2? — y* 2? + y?) C k[z,y]. Then Rad(z? — y?) = 2 — 3,
Rad(2? + y?) = 22 + y%. However, (z? — y?, 22 + y?) = (22, 5?), so we see that
(z,y) € V/I. From this we deduce that (z,y) = /I since (z, y) is a maximal ideal,
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and VT # Kz, y]. However, (224, 22 +4%) # (x, 1), 50 /([ 9) # (Rad f, Rad g)
when f = 2% — 32, g = 2% + 9%

An alternate example is the one we saw in class (and question 1). Let I = (y, y* —
3 —2?%), ie, f =y and g = y> — 23 — 22, Then Rad(f) = f, Rad(g) = g, but
since I = (y, 2(z + 1)) we have vI = (y, x(z + 1)) # I.

3. Let m C Clz,y, 2] be the maximal ideal m = (x — 3,y — 4,z — 5). Which of the
following ideals are contained in m? And how do you know?

Solution. In class we have seen that for a maximial ideal of the form m = (z; —
ai, ..., Ty, — ap) C k[z1,...,x,], that a polynomial g € k[zy,...,z,] is in m if and only
if g(ay,...,a,) = 0. (We saw this in two different ways, one of which was identifying m
as the kernel of the evaluation map k[z1,...,z,] — k sending each g to g(a4,...,a,),
and the other was by considering the “Taylor expansion” of g around (ay,...,a,).)

In this problem we are considering the maximal ideal m = (z — 3,y — 4,z — 5).

(a) The ideal I} = (2% + y* — 2?) is generated by g; = 2 + y? — 22. Since ¢1(3,4,5) =
32 + 42 — 5% = 0, we see that g € m. Since g; € m, the ideal I = {g;) is also
contained in m.

(b) The ideal I, = (2? — 2xy) is generated by g, = 22 — 2zy. Since ¢»(3,4,5) =
52 —2.3-4=25—-24=14#0, we see that go € m, and so I, ¢ m.

(c) Theideal I3 = (y? —2® —x —y, vyz — 32% + 5x) is generated by g3 = y* —a2 —x —y

and hs = xyz — 322 + 5. We have
g5(3,4,5) = 4*—-32-3-4=16-9-3—-4=0, and
h3(3,4,5) = 3:4-5-3-5°4+5.-3=60—-75+15=0

and therefore both g3 and hs are in m. We conclude that I3 = (g3, h3) C m.



(d) The ideal Iy = (x® + y* + 2% — 2y — vz — yz, Tyz + 4xz — 822) is generated by
gy = 2? +y? + 22 —xy — 22 — yz and by hy = Tyz + 42z — 82%2. We have

94(3,4,5) = 3*+4°+5°—-3.4-3.-5—-4-5=3, and
hy(3,4,5) = 7-4-54+4-3-5—-8-52=0.

Since ¢4(3,4,5) =3 # 0, g ¢ m and therefore I, ¢ m.

[Math 813 only] 4.  In order that maximal ideals are in one-to-one correspondence with points, we
needed the condition that k& be algebraically closed. In this problem we will see in a
simple example what happens if k is not algebraically closed: Maximal ideals are in
one-to-one correspondence with Gal(k/k) orbits of points.

Matn 813 oty (a) Let G = Gal(C/R) be the Galois group of C = R over R. Classify the orbits of G
on C.

Math 813 onty]  (b) Classify the maximal ideals of Rx].

Math 813 onty]  (c) Show that the maximal ideals of R[x] are in one-to-one correspondence with the
orbits of Gal(C/R) on C.

Solutions.

Math 813 onty]  (a) The Galois group is G = Gal(C/R) = {Idc, ¢}, where o is complex conjugation.
If z € R C C then z is fixed by G. If z € C\ R then the orbit of z is {z,Z}, of
size 2. Thus an orbit of GG consists of either a real number or a pair of conjugate
complex numbers.

Math 813 only]  (b) The ring R[z] is a principal ideal domain, so every ideal I C R[x] is of the form
I = (f) for a monic polynomial f. In order for I to be maximal we need f to be
irreducible. The monic irreducible polynomials in R[z| are either linear, so of the
form z — z with z € R or an irreducible quadratic polynomial 2% + bz + ¢ with
b,c € R and b? —4c < 0. The roots of the irreducible quadratic polynomial are the
conjugate pair of complex numbers %(—b + Vb? — 4¢), while the root of the linear
polynomial is the real number z.

Math 813 onty]  (¢) The maximal ideals of R[z] are in one-to-one with the G-orbits on C: given u € C
we send u to the maximal ideal generated by [] .o, (¢ — 2). Concretely, for
u € R C C this means we send u to the ideal (x —u), and for u € C\ R we send u
to the ideal ((z — u)(x — 7)) = (x* — (u+u)x + wu). Conversely, given a maximal
ideal m = (f) C Rz] we associate it to its set of roots. This gives a one-to-one
correspondence between the two sets.



NOTE: The reason we looked at points of C = Al is that Al is the variety associated
to the ring of functions R[z] = C[z]. More generally the maximal ideals of k[xy, ..., x,]
are in one to one corresopondence with the orbits of Gal(k/k) acting on A7. There is a
similar statement for maximal ideals of a ring R[X| where X is an affine variety defined
over k (i.e., using equations in k[zy,...,z,]). Thus working over a non-algebraically
closed field k amounts to combining the geometric picture over k with the action of
Gal(k/k) on the points of the variety.



