
Math 413/813 Answers for Homework 6

1. Draw pictures of the zero loci of the two equations f1 = xz−x and f2 = x2+ y2− z2

in A
3. Find their intersection and decompose it into irreducible components. Find the

prime ideals in k[x, y, z] associated to each component.

Solution. The zero locus of f1 = xz− x = x(z− 1) consists of the plane x = 0 and the
plane z = 1. The zero locus of f2 = x2+ y2− z2 is the cone from Homework 2, Question
1(a). Their intersection looks like this:

with components .

The components are the circle, with equations z = 1, x2 + y2 = 1, the line x = 0, y = z,
and the line x = 0, y = −z. The respective ideals are 〈z − 1, x2 + y2 − 1〉, 〈x, y − z〉,
and 〈x, y + z〉.

2. Draw pictures of the various kinds of irreducible subvarieties in A
3, analogous to the

one we drew in class for A2. Include a parallel diagram of corresponding prime ideals.

Solution. The picture appears on the next page. In that diagram, the maximal
ideals m1, m2, and m3 correspond to points p1, p2, and p3; the prime ideals Q1 and Q2

correspond to curves C1 and C2; prime ideals P1, P2, and P3 correspond to surfaces S1,
S2, and S3; finally the prime ideal {0} corresoponds to all of A3. The inclusion among
the ideals corresponds to the inclusions among the irreducible subvarieties, but in the
opposite direction.

We can read a few more facts off from this diagram. In the picture the curve C2 is
the intersection of the two surfaces S2 and S3; the corresponding relation among the
prime ideals is Q2 =

√
P2 + P3. However, C1 is not the intersection of S1 and S2, that

intersection has at least one other component. Therefore, the equations in P1 and P2

are not enough to generate Q2 (not even up to radical), more equations are needed to
get rid of the other component.
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3. Let A4 be thought of as the space of 2× 2 matrices via the correspondence

(x1, x2, x3, x4) ↔
[

x1 x2

x3 x4

]

.

Let U ⊂ A
4 be the subset consisting of 2× 2 matrices with distinct eigenvalues. In this

question we will show that U is a Zariski open set.

(a) For a quadratic polynomial p(t) = at2 + bt+ c, what is the algebraic condition on
a, b, and c which determines when p(t) has repeated roots?

(b) For a point (x1, x2, x3, x4) ∈ A
4, write out the characteristic polynomial p(t) of the

corresponding matrix.

(c) Show that U is an open subset of A4 in the Zariski topology.

Solution.

(a) A quadratic polynomial at2 + bt+ c (with a 6= 0) has repeated roots if and only if
b2 − 4ac = 0.

(b) p(t) =

∣

∣

∣

∣

t− x1 −x2

−x3 t− x4

∣

∣

∣

∣

= (t−x1)(t−x4)−(−x2)(−x3) = t2−(x1+x4)t+(x1x4−
x2x3).

(c) The matrices with distinct eigenvalues are those whose characteristic polynomials
have no repeated roots. By parts (a) and (b), these are the matrices for which

(x1 + x4)
2 − 4(x1x4 − x2x3) = (x1 − x4)

2 − 4x2x3 6= 0.

Thus the set U is the complement to the set of points where (x1 − x4)
2 = 4x2x3,

and is therefore an open set.

4. In this question we will check the claim that finite unions of subvarieties are again
subvarieties, and thus that the set of subvarieties of a given variety satisfies the axioms
to be the closed subsets of a topological space.

By induction (or by repeating the argument) it is enough to check the case of the union
of two subvarieties. Let X be an affine variety with ring of functions R[X ], and Z1, Z2

two closed subsets (i.e., subvarieties) of X with ideals J1 and J2.

(a) Show that V (J1 ∩ J2) = Z1 ∪ Z2.

(b) Give an example to show that an infinite union of closed subsets (in the Zariski
topology) is not closed.
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Solution.

(a) Let x be any point outside Z1 ∪ Z2. Then since x 6∈ Z1, there is an f1 ∈ J1 with
f1(x) 6= 0. Similarly, since x 6∈ Z2 there is an f2 ∈ J2 with f2(x) 6= 0. But then
f1f2 ∈ J1 ∩ J2, and (f1f2)(x) = f1(x)f2(x) 6= 0, so x 6∈ V (J1 ∩ J2). This shows the
inclusion V (J1 ∩ J2) ⊆ Z1 ∪ Z2.

We now show the opposite inclusion. Suppose that z ∈ Z1 ∪ Z2. Then z is either
in Z1 or Z2, or both. For any f ∈ J1 ∩ J2 we must therefore have f(z) = 0: if
z ∈ Z1 we use the fact that f ∈ J1 to conclude that f(z) = 0, while if z ∈ Z2 we
use the fact that f ∈ J2 to conclude the same thing. Thus points of Z1 ∪ Z2 are
in the zero loci of J1 ∩ J2, or Z1 ∪ Z2 ⊆ V (J1 ∩ J2).

The two inclusions show that V (J1 ∩ J2) = Z1 ∪ Z2.

(b) There are many possible examples. Here are two

(b) Let Z = {. . . ,−2,−1, 0, 1, 2, 3, . . .} ⊂ A
1 (i.e, Z is the set of integer points).

A point is closed in A
1, so Z is the union of infinitely many closed subsets,

but Z is not closed in the Zariski topology. Any polynomial f ∈ k[x] which
vanishes on Z has infinitely many roots, and so must be the zero polynomial.

(b) Similarly, let Z ⊂ A
2 be the union of the lines through the origin with slopes

0, 1, 2, 3, . . . . Each line is closed in the Zariski topology by the union is not:
Any polynomial f vanishing on all the lines must be the zero polynomial.
(One way to see this: intersect with any line of the form y = c or vertical line
x = c [with c 6= 0 in both cases] to reduce to the example above and conclude
that f is zero on that line. Since f is zero on each horizontal and vertical
line away from the origin, f is the zero polynomial.)
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