
Math 413/813 Answers for Homework 7

1. Let X = A
n and for 2 6 s 6 n let Vs be the open subset of X which is the

complement of the linear space x1 = x2 = x3 = · · · = xs = 0. Compute (analogously to
the computation for A2 and s = 2) the ring of functions OX(Vs). (You can make your
life easier in the case s > 2 by appealing to your answer for s = 2.)

Solution. First consider the case that s = 2. Then V2 is covered by the two principal
open sets x1 6= 0 and x2 6= 0 with respective coordinate rings k[x1, . . . , xn,

1
x1
] and

k[x1, . . . , xn,
1
x2
]. By construction, an element of OAn(V2) is a pair g1 ∈ OAn(Ux1

) and
g2 ∈ OAn(Ux2

) which agree on the intersection. Write g1 as a polynomial in x1 and x2

whose coefficients are in k[x3, x4, . . . , xn], i.e. as

g1 =
∑

bij(x3, · · · , xn)x
i
1x

j
2

with bij(x2, . . . , xn) ∈ k[x3, . . . , xn], j > 0 and i ∈ Z. Similarly we can write

g2 =
∑

cij(x3, · · · , xn)x
i
1x

j
2

with cij(x2, . . . , xn) ∈ k[x3, . . . , xn], i > 0 and j ∈ Z.

In order for g1 and g2 to agree inOAn(Ux1x2
) = k[x1, . . . , xn,

1
x1
, 1
x2
] the coefficients of each

monomial xi
1x

j
2 must agree. That is, we must have bij = cij for all i and j. Since cij = 0

when i < 0, we have bij = 0 for negative i as well. Thus bij 6= 0 only for nonnegative i and
j. By the equality cij = bij the same is true for cij . Thus both g1 and g2 are polynomials
in x1,. . . , xn (and the same polynomial). Therefore OAn(V2) = k[x1, . . . , xn].

To deal with the case s > 2, we could repeat this type of computation, or take a short-
cut. We have V2 ⊂ V3 ⊂ V4 ⊂ · · · ⊂ Vn. Hence, when s > 2 we have an inclusion V2 ⊂ Vs,
and therefore a restriction map OAn(Vs) −→ OAn(V2). We also have a restriction map
OAn(An) −→ OAn(Vs). By the first part of this problem, the composite map

k[x1, . . . , xn] = OAn(An) −→ OAn(Vs) −→ OAn(V2) = k[x1, . . . , xn]

is an isomorphism. Since A
n is a domain, the restriction map OAn(Vs) −→ OAn(V2) is

an inclusion. By the above composition map, above, the map OAn(Vs) −→ OAn(V2) is
a surjection as well. Thus the map OAn(Vs) −→ OAn(V2) is an isomorphism, and so
OAn(Vs) = OAn(V2) = k[x1, . . . , xn]. ✷

2. Let X be the affine variety described by the equation xy − z2 = 0 in A
3, and let

U ⊂ X be the complement of (0, 0, 0) ∈ X . In this problem we will compute OX(U)
and see that it is equal to R[X ].
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The variety X is covered by the principal open sets Ux and Uy, with coordinate rings
k[x, y, z, 1/x]/(xy − z2) ∼= k[x, 1/x, z] and k[x, y, z, 1/y]/(xy − z2) ∼= k[y, 1/y, z] respec-
tively. Any function g1 ∈ R[Ux] can be written as a finite sum g1 =

∑

aijx
izj and any

function g2 ∈ R[Uy] can be written as a finite sum g2 =
∑

bkℓy
kzℓ.

(a) What range of indices are valid in the expressions for g1 and g2 above?

We want to look at pairs (g1, g2) which agree on Ux ∩Uy. The expressions for g1 and g2
above are with respect to different variables. To compare them we need to write them
in terms of the same variables.

(b) Use the relation y = z2

x
(valid on Ux, and hence also on Ux ∩ Uy) to write g2 in

terms of the variables x and z.

(c) In order for g1 to be equal to g2, what must be the relation between the aij and
the bkℓ?

(d) Considering the restrictions on the indices from part (a), your formula from (c)
will imply additional restrictions on i and j. What are they?

(e) For each i and j satisfying the conditions above, show that there is a monomial
xpyqzr which is equal to xizj on Ux.

(f) Explain why this means that the restriction homomorphism R[X ] −→ OX(U) is
surjective.

Solution.

(a) The ranges are i ∈ Z and j > 0 for g1 and k ∈ Z and ℓ > 0 for g2.

(b) g2 =
∑

bkℓy
kzℓ =

∑

bkℓ

(

z2

x

)k

zℓ =
∑

bkℓx
−kzℓ+2k.

(c) In order for g1 and g2 to agree, the coefficients of each monomial must match up.
Thus we must have bkℓ = a−k,ℓ+2k for all k and ℓ, or reversing the formula, that
aij = b−i,j+2i.

(d) Since bkℓ = 0 when ℓ < 0, we have aij = 0 for j + 2i < 0. Thus nonzero aij occur
only when j + 2i > 0. Here is a picture of the pairs (i, j) satisfying this condition
(as well as j > 0, i ∈ Z):
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j
+

2
i
=

0

i

j

(e) Consider a monomial xiyj with i ∈ Z, j > 0, and j+2i > 0. If j is even set q = j

2

and p = i + j

2
. Then q > 0 since j > 0, and p > 0 since 2p = 2i + j > 0. The

monomial xpyq therefore belongs to OX(X). Its restriction to Ux is equal to

xp

(

z2

x

)q

= xp−qz2q = x(i+ j

2
)− j

2 z2(
j

2
) = xiyj.

On the other hand, if j is odd, set q = j−1
2
, p = i + j−1

2
. Since j > 0 and is odd,

j > 1 and therefore q > 0. Since 2i + j is > 0 and odd (j is odd, and 2i even),
2i+ j is > 1 and therefore 2i+ j > 1 and so 2p = 2i+ (j− 1) > 0. The monomial
xpyqz therefore belongs to OX(X). Its restriction to Ux is

xp

(

z2

x

)q

z = xp−qz2q+1 = x(i+ j−1

2
)− j−1

2 z2(
j−1

2
)+1 = xiyj.

(f) Given any g1 and g2 which agree on Uxy as above, part (c) shows us that g1 =
∑

aijx
iyj with i ∈ Z, j > 0, and j+2i > 0. By part (e) any such monomial xiyj is

the restriction of a monomial of the form xpyqzr, with p, q, r > 0, is the restriction
of something in R[X ] = OX(X). Thus the restriction map R[X ] = OX(X) −→
OX(U) is surjective.

3. Given a ring A and an element f ∈ A we have been looking at the ring A[1/f ] obtained
by adjoining the additional element 1/f to A (and of course using ring operations to
get more elements). More precisely the ring A[1/f ] is the ring A[y]/((1− yf)). There is
a natural ring homomorphism A −→ A[1/f ], and we have seen in class that this is not
always injective. For instance, if h ∈ A is an element so that h · fn = 0 for some n > 1,
then in A[1/f ] we compute that h = (h · fn) · 1

fn = 0 · 1
fn = 0.

The purpose of this question is to prove the converse direction: An element h ∈ A is in
the kernel of the map A −→ A[1/f ] only if there is an n > 1 such that h · fn = 0 in A.
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Suppose that h is such an element. This means that the image of h under the inclusion
A →֒ A[y] must be in the ideal (yf−1) in A[y]. Therefore there is a polynomial g ∈ A[y]
such that h = g(yf−1). Since g ∈ A[y] we can write g as g = g0+g1y+g2y

2+ · · ·+gny
n

with each gj ∈ A.

(a) Expand g · (yf − 1) as a polynomial in y.

(b) As a polynomial in y, h has degree 0. Since we have h = g · (yf − 1), the coeffi-
cients of powers of y on both sides of the equality must be the same. Comparing
coefficients, write down all the relations you obtain.

(c) Show that h · fn+1 = 0.

Solution.

(a) g(yf − 1) = (g0 + g1y + g2y
2 + · · · gny

n)(yf − 1)
= −g0 + (fg0 − g1)y + (fg1 − g2)y

2 + · · ·+ (fgn−1 − gn)y
n + (fgn)y

n+1.

(b) Comparing powers of y we have:

h = −g0,

0 = fg0 − g1,

0 = fg1 − g2,
...

...
...

0 = fgn−1 − gn,

0 = fgn.

(c) From the second through last equations we have g1 = fg0, g2 = fg1 = f 2g0,
g3 = fg2 = f 3g0, . . . , gn = fgn−1 = fng0, and finally 0 = fgn = fn+1g0. From the
first equation we have h = −g0, and therefore fn+1 · h = −fn · g0 = 0.

4. A topological space X is called quasi-compact if whenever {Ui}i∈S are a family of
open subsets such that ∪i∈SUi = X then there are a finite number of Ui’s which actually
cover X . (The term compact is reserved for Hausdorff topological spaces with this finite
subcover property. A topological space with the finite subcover property alone is called
quasi-compact.) In this question we will show that affine varieties are quasi-compact.
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(a) Show that if Ufi , i ∈ S is a family of principal open subsets which cover an affine
variety X , then there is a finite number which cover X . (Suggestion: Think
about what the condition “the Ufi cover X” means about the complement.)

(b) Given an arbitrary cover of X by open sets {Uj}, j ∈ S, use the fact that the
principal open subsets are a basis for the Zariski topology and part (a) to show
that a finite number of the Uj are sufficient to cover X .

Solution.

(a) The condition that the “Ufi cover X” means that the complement V (fi) is empty,
which is equivalent to the statement that the fi generate the ideal R[X ] = Ox(X)
(i.e. the whole ring). Since an ideal is equal to the whole ring if and only if 1 is
in the ideal, this means that we must be able to write 1 = gi1fi1 + gi2fi+2 +
· · · + gisfis for some finite number of fi1 ,. . . , fis. (The elements in an ideal
generated by an infinite set are finite linear combinations of elements from the
set.) Thus (fi1 , . . . , fis) = R[X ] too, since 1 is in the ideal. But this means that
V (fi1 , . . . , fis) = ∅, or that Ufi1

, . . . , Ufis
cover X .

Note: The finiteness argument above using the fact that 1 must be in the ideal gener-
ated by the fi may be replaced by a Notherian argument: We have a nested sequence
of closed sets V (f1) ⊇ V (f1, f2) ⊇ V (f1, f2, f3) ⊇ · · · which can only have finitely many
distinct elements (otherwise we would get an infinite sequence of distinct decreasing
closed sets, which can’t happen in a Notherian topology). Thus we only need finitely
many of the fi to get down to the smallest closed set in the chain, the empty set.

(b) Suppose that {Uj} is an arbitrary cover ofX by open sets. Since the principal open
sets form a basis for the Zariski topology, we may cover each Uj by principal open
sets. This gives us a collection of principal open sets which also cover X (since
they cover the Uj , which cover X). By part (a), we only need finitely many of the
principal open sets to cover X . For each principal open set in a finite subcover,
take a Uj which contains it. The union of these Uj then contains X , since the
principal open sets they contain cover X .

5. In class we have seen that if X is an affine variety and Uf a principal open subset,
then Uf is an affine variety. Perhaps every open subset is an affine variety? The purpose
of this question is to show that the answer to this is no. Let U = A

2 \ {(0, 0)}. Recall
that we have computed that OA2(U) = k[x, y] = OA2(A2).

(a) Let ϕ : U →֒ A
2 be the inclusion map. Compute the ring homomorphism ϕ∗.
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(b) Maps between affine varieties are completely determined by the pullback maps. If
U were an affine variety, explain why ϕ would have to be an isomorphism.

(c) Show that U is not an affine variety.

Solution.

(a) The inclusion map ϕ : U −→ A
2 is given by ϕ(x0, y0) = (x0, y0) ∈ A

2. The map
ϕ∗ therefore satisfies ϕ∗(x) = x (since ϕ∗(x)(x0, y0) = x(ϕ(x0, y0) = x0 for each
(x0, y0 ∈ A

2). Similarly ϕ∗(y) = y. Thus the pullback map ϕ∗ is the identity map
on

k[x, y] = OA2(A2)
ϕ∗

−→ OA2(U) = k[x, y].

(b) As part of proving the correspondence between maps between affine varieties and
ring homomorphisms between their coordinate rings, we showed that ϕ∗ is an
isomorphism if and only if ϕ is an isomorphism. (See for instance Homework 3,
question 1(d).)

(c) The map ϕ : U −→ A
2 is not an isomorphism, since ϕ is not surjective: (0, 0) is not

in the image. Therefore there can certainly not be any inverse map ϕ−1 : A2 −→ U ,
since there is nowhere to send (0, 0).
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