
Math 413/813 Answers for Homework 8

1. Although we are talking about Pn over algebraically closed fields, and usually over
C, we can consider Pn over any field. If we consider Pn over a finite field, then Pn only
has finitely many points with coordinates in the field. In this problem we will count the
number of points in two different ways. Let p be a prime number.

(a) How many points does Am have over Fp?

(b) How many elements λ ∈ Fp, λ 6= 0 are there?

(c) Considering Pn as An+1 \ {(0, . . . , 0)} modulo the relation of scaling by elements
of F∗

p, how many points does Pn have over Fp?

(d) We have seen that the complement of a standard An coordinate chart in Pn is a
Pn−1. Continuing in this way we get a decomposition of Pn into disjoint subsets:

P
n = A

n ⊔ A
n−1 ⊔ A

n−2 ⊔ · · · ⊔ A
1 ⊔ A

0.

Use this decomposition and part (a) to give a second formula for the number of
points of Pn over Fp.

(e) Check that your answers in (c) and (d) are the same.

(f) As a specific example, let p = 2. How many points does P2 have over F2? How
many lines are there in P

2 over F2? How many points are on each line?

Remarks. (1) We could also have considered the case that the field is Fq, with q = pr

a prime power. The formulas, with q taking the place of p, are the same. (2) If you
have seen the card game “Spot It”, you may want to also do the computations in (f)
with p = 7.

Solution.

(a) The points of Am over Fp are those points (x1, . . . , xm) with each xi ∈ Fp. Since
there are p choices for each xi, this is a total of p · p · p · · ·p = pm different points.

(b) There are p− 1 points of Fp which are not equal to 0.

(c) The (multiplicative) group F
∗

p = Fp \ {0} acts on A
n+1 \ {(0, . . . , 0)} by the rule

λ·(z0, . . . , zn) = (λz0, . . . , λzn). We have defined Pn as the orbits under this action.
Each orbit has exactly p− 1 elements, and since An+1 \ {(0, . . . , 0)} has pn+1 − 1

elements, that means that there are pn+1
−1

p−1
orbits. I.e., Pn has pn+1

−1

p−1
points over

Fp.
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(d) Alternately, using the decomposition

P
n = A

n ⊔ A
n−1 ⊔ A

n−2 ⊔ · · · ⊔ A
1 ⊔ A

0.

and part (a) we see that Pn has

pn + pn−1 + pn−2 + · · ·+ p1 + p0

points over Fp.

(e) The answers in (c) and (d) are of course the same: the formula for summing a
geometric series shows us that

pn + pn−1 + pn−2 + · · ·+ p1 + 1 =
pn+1 − 1

p− 1
.

Remark. This counting problem is therefore a geometric incarnation of the geometric
series.

(f) Our formulas tell us that over F2, P
2 has 23−1

2−1
= 7 points.

There are also 7 lines. Lines are given by equations aX + bY + cZ = 0, where
a, b, c ∈ F2, not all are zero, and we only care about (a, b, c) up to scalar. Thus
the lines in P2 are themselves parametrized by a P2, and so the number of lines
is the same as the number of points, namely 7. Since each line is a P1, it has
22−1

2−1
= 2 + 1 = 3 points.

[1 :0 :0]

[0 :1 :0][0 :0 :1]

[1 :1 :0]

[0 :1 :1]

[1 :0 :1]

[1 :1 :1]

Y
=

0

Z
=

0

X = 0

Y
+

Z
=

0

X
+

Y
=

0 X
+

Z
=

0

Remark. The example of P2 over F2, and its incidence rela-
tions (the data of which lines contain which points) are well-
known example of a finite geometry.

In that setting, it often goes by the name of the Fano

Plane, and the points and relations are usually summa-
rized by the picture at right.

In the picture, the 7 points of P2 over F2 are shown.
The lines of the triangle (and through the tri-
angle) are the lines in P

2 — each one contains
3 points.

The circle going through [1 : 0 : 1], [1 : 1 : 0], and [0 : 1 : 1] is also represents a line, the
line with equation X + Y + Z = 0.

In the picture, every two distinct points are contained on a unique line, every two
distinct lines meet in a unique point, and every line contains three points, just as they
are supposed to.
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2. In Pn, the zero locus of an equation of the form a0Z0 + a1Z1 + · · ·+ anZn is called
a hyperplane. Given any k hyperplanes, H1, . . . , Hk in Pn with k 6 n, show that their
intersection H1 ∩H2 ∩ · · · ∩Hk is nonempty.

Solution. Let hyperplane Hi be given by the equation ai0Z0+ai1Z1+ · · ·+ainZn. The
k × (n + 1) matrix











a10 a11 a12 · · · a1n
a20 a21 a22 · · · a2n
...

...
...

. . .
...

ak0 ak1 ak2 · · · akn











has rank at most k, and so if k 6 n there is a nonzero vector (z0, z1, . . . , zn) in the
kernel. The point [Z0 : Z1 : · · · : Zn] is then a point of Pn on each of H1,. . . , Hk, so that
H1 ∩H2 ∩ · · · ∩Hk 6= ∅.

3. In this problem we will consider subvarieties of P1.

(a) Let X and Y be the homogeneous coordinates on P
1, and let x = [α : β] be a point

of P1. Show that the homogeneous polynomial G = βX − αY has only a single
zero, and that zero is at x.

(b) Let F be a homogeneous polynomial of degree d in X and Y . The zeros of F are
a finite set of points. Show that the number of points, counted with multiplicity
(i.e, counted according to the number of times each factor appears) is exactly d.
As always, you should assume that the field k is algebraically closed.

Solution.

(a) The point x = [α : β] ∈ P1 is clearly a zero of G since G([α : β]) = β(α)−α(β) = 0.
Now let [u : v] ∈ P1 be a zero of G. The condition that G([u : v]) = 0 is uβ−vα = 0.
Perhaps the cleanest way to write this condition is as the condition that

∣

∣

∣

∣

u v

α β

∣

∣

∣

∣

= 0.

But a 2× 2 matrix has rank one if and only if one row is a multiple of the other.
Since both rows are nonzero, we conclude that there is a λ ∈ k, λ 6= 0 so that
(u, v) = λ(α, β). This means that the points [u : v] and [α : β] are the same point
of P1, so that x = [u : v].

(b) Since k is algebraically closed, we can factor F as

F =

d
∏

i=1

(βiX − αiY )
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with αi, βi ∈ k. (To see that this follows from k being algebraically closed,
dehomogenize F to get polynomial f in one variable, factor f into a product of
linear factors, and rehomogenize to get the above factorization of F .)

By part (a), the i-th factor has a single zero, the point [αi : βi] ∈ P1. Thus F has
d zeros, when counted with multiplicity.

4. We have seen that affine varieties are completely determined by their ring of global
functions. In contrast, projective varieties are not determined by their ring of functions,
in fact, they have very few global functions at all.

(a) Show that the only global algebraic functions on P1 are the constant functions. Do
this by considering functions f0 and f1 in the standard coordinate charts U0 and
U1, and looking at the conditions for these functions to agree on the intersection.

(b) Similarly show that the only global algebraic functions on P
2 are the constant

functions. You can do this by patching as in part (a), but perhaps a simpler
argument is to use the fact that any two points p, q ∈ P2 are contained in a unique
line, and that each line is a P1, and part (a).

After doing the question we see that the rings of global functions on P1 and P2 are the
same, but P1 and P2 are certainly not isomorphic!

Solution.

(a) The standard open sets U0 and U1 are each isomorphic to A
1. Let z be the

coordinate on U0 and w the coordinate on U1. On the intersection the coordinates
are related by the formula z = 1

w
. Writing out g0 and g1 as polynomials in z and

w respectively, we have

g0 = a0 + a1z + a2z
2 + a3z

3 + · · ·+ adz
d

and
g1 = b0 + b1w + b2w

2 + b3w
3 + · · ·+ bew

e

On the intersection we have w = 1

z
, so that on the intersection g1 can also be

written as

g1 = b0 + b1

(

1

z

)

+ b2

(

1

z

)2

+ b3

(

1

z

)3

+ · · ·+ be

(

1

z

)e

=
e

∑

j=0

bjz
−j

In order for g0 and g1 to be equal on the intersection, the coefficients of z must be
equal, so that we must have ai = b−i for all i. Since ai = 0 when i < 0 and bj = 0
when j < 0 this means that the only nonzero coefficients possible are a0 and b0,
and these must be equal by the relation above. Thus, the only algebraic functions
on P1 are the constant functions.
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(b) Let f be an algebraic function on P2, and let p and q be any two distinct points
in P2. As we have seen in class, there is a unique line ℓ containing both p and q.
The line ℓ is a P1 (all lines in P2 are P1’s). Restricting f to ℓ, and using part (a),
we get that f is a constant function on ℓ, and therefore that f(p) = f(q).

We have therefore shown that given any two points p and q on P
2, f takes the

same values on those two points. It follows that f takes the same values on every
point, and so f is constant.

Remark. The conclusion of this result is perhaps easier to see in the complex analytic
world. Suppose that f is a complex analytic function on P1. Since f is continuous, and
P1 compact, |f | must obtain a maximum value at some point p ∈ P1. Restricting to
an open neighbourhood U around p, we would then have a complex analytic function
on U such that |f | takes its maximum value on an interior point. By the maximum
principle from complex analysis, that means that f must be constant on U . By analytic
continuation we conclude that f is constant on all of P1. A similar argument (using
the two-variable maximum principle) works for P2. The key difference between Pn and
the affine case is that P

n is compact, and that puts strong restrictions on the global
algebraic or holomorphic functions.
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