Math 413/813 Answers for Homework 11

1. Here is an extremely simple example of a map between Riemann surfaces (aka
“algebraic curves”). Fix an integer n > 1 and define a map ¢: P* — P! by the formula
[(X: Y] — [X™: Y.

(a) Check that ¢ is well-defined, that is (1) ¢ doesn’t depend on the choice of rep-

resentative we use for [X: Y], and (2) no point of P! is sent to [0: 0] by these
instructions.

In order to see that this is a map of Riemann surfaces, let us look in coordinate charts.

()

(¢)

(d)

Check that o' (Uy) = Uy and that ¢~ '(U;) = Uy, i.e, that ¢ maps the standard
coordinate charts to the standard coordinate charts.

In each of Uy and U; write out (in the coordinates of each chart) what ¢ is doing.
Is ¢ an algebraic map?

Find all the ramification points of ¢ and their ramification degrees.

Solution.

(a)

(1) Suppose that p = [X : Y] € PL. For any A € C*, [AX : \Y] represents the
same point p. Since the coordinates of p([(AX)™ : (AY)"]) = [\"X : A"Y] are
a A" times the coordinates of p([X : Y]) = [X™ : Y], they represent the same
point in P!. Therefore the instructions for ¢, do not depend on the homogeneous
coordinates chosen to represent p.

(2) The only way that ([X : Y]) =[X":Y"] =[0:0] is if X" =0 and Y =0,
which implies that X = 0 and Y = 0. Since X = 0, Y = 0 is not a point of P!,
we conclude that there is no point [X : Y] € P! so that ¢([X : Y]) = [0: 0], and
so ¢ gives a well defined map of sets from P! to P!.

The coordinate chart Uy is defined by the condition X # 0, so [X : Y] € o~ }(U))

exactly when o([X : Y]) = [X" : Y] satisfies X™ # 0, which is the same condition

as X # 0. In other words, [X : Y] € ¢ }(Up) if and only if [X : Y] € Uy, so
-1 _

¢~ (Uo) = Up.

Similarly, the coordinate chart U is defined by the condition that Y # 0. Therefore
(X : Y] € ¢ }(U)) if and ony if p([X : Y]) = [X™ : Y] satisfies the condition
Y™ # 0, which is the same as asking that Y # 0. Therefore, [X : Y] € ¢~ 1(U)) if
and only if [X : Y] € U; and so o~ }(U;) = U;.

1



(¢) On Uy the coordinate is z = % From the point of Uy, the map ¢ is the composite
2o 12 B A " =[1: 2" < 2" € U
That is, on Uy, ¢ is given by ¢(z) = 2"
Similarly, on U; with coordinate w = %, @ is the composite
w e w1 w17 = [w" : 1] & w" € Uy,
so that p(w) = w™ on Uj.
From this description, ¢ is certainly an algebraic map!

(d) In chart Uy, the only ramification point is at 0 (corresponding to the point py =
[1:0] € P'). From the coordinate description z + 2", the ramification degree at
po is ky, = n.

In chart Uy, the only ramification point is at 0 (corresponding to the point p; =
[0:1] € P!). From the coordinate description w — w™, the ramification degree at
Do is kp, = n.

NOTE: The map ¢ is a map from P* to P! of degree n. As a check on our computations
of the number and ramification degree of the ramification points of ¢ we should see that
the Riemann-Hurwitz formula holds with this data. The computation is:

S222(0-1) = 2g(FY) — 1) 20 2(g(®Y) — 1)+ Sy — 1)
= n-20—-)4+n—-1)+n—-1)=—-2n+(2n—-2) = -2,

So, our computation seems reasonable — the Riemann-Hurwitz formula agrees that hav-

ing two ramification points of degree n is compatible with a degree n cover from P! to
P!

2. Use the Riemann-Hurwitz formula to find the genus of X, the genus of Y, or the
number of ramification points, as required.

(a) m: X — P! is a degree 3 cover, with two ramification points, both with ramifi-
cation index k, = 3. Find the genus of X.

(b) m: X — P! is a degree 3 cover, with three ramification points, all with ramifica-
tion index k, = 3. Find the genus of X.



(¢) m: X — Y is a map of degree d, X has genus 1, and there are no ramification
points. Find the genus of Y.

(d) X is of genus g, Y is of genus 1, the map 7 : X — Y is of degree d, and all
ramification points p in X are of index 2. Find the number of ramification points
(the answer turns out, in this case, not to depend on the degree d).

Can you think of a map X — P! satisfying the description in part (a)?

Solution.

(a) By the Riemann-Hurwitz formula,
29x —1)=3-20-1D)+B-1)+B—-1)=—6+4= -2,

so that gx = 0.

(b) By the Riemann-Hurwitz formula,
20x —1)=3-20-1)+B-1)+B-1)+(3-1)=-6+6=0,

so that gx = 1.

(¢) By the Riemann-Hurwitz formula,
0=2(1-1)=d-2(9v —1)+0=2(gv — 1),
so that gy = 1.

(d) Since gx = g, gy = 1, and k, = 2 for all ramification points, the Riemann-Hurwitz
formula gives us

20—2=2-(gx—1)=d-2(1—-1)+ Z(k:p — 1) = 0 + (# ramification points),
p

so that the number of ramification points is 2g — 2.

The map in (a) is a map 7: P! — P! of degree 3, with two ramification points, each of
ramification index k, = 3. An example of such a map is the map considered in question
1 with n = 3, i.e,. the map ¢: P! — P! given by ¢([X : Y]) = [X?: V3.



3. In this question we will complete the proof of the theorem describing the “global”
picture of a non-constant map ¢: X — Y between Riemann surfaces. The key missing
step of the theorem was this : to show that there exists a positive integer d, such that
for any ¢ € Y, Zpewjl(q) 'k;p = d. Here the sum is over all p such that ¢(p) = ¢, and k,
denotes the ramification index of ¢ at p.

To reduce notation somewhat, let us define the function D:Y — N by D(q) =
Zpewl(q) k,. The goal of this problem is then to show that D is a constant function.

LEMMA : For each ¢ € Y there is a small neighbourhood (= open set around) V' of ¢
such that D is constant on V.

First let us see how to prove the result using the lemma.

(a) Use the lemma to show that for each d € N the set

Dd) = {ge Y| Do) = d}
is open.

(b) Use (a) to show that for each d € N the set D~1(d) is closed. (SUGGESTION: this
is the same as showing that the complement is open.)

(c¢) Use (a)+(b) to show that for each d € N, D7!(d) is either Y or the empty set.

(d) Conclude that there is a unique d € N such that D~'(d) =Y, i.e., conclude that
D is constant on Y.

We now work on proving the lemma.

Fix ¢ € Y, and suppose that ¢~'(q) = {p1,p2,...,p,}. From our local picture we know
that there is an open set V around ¢, and open sets Uy, ..., U, around py,..., p, such

that p(U;) C V for each i = 1,..., r, and that on each U; the map ¢ looks like z; — zf”i,
where z; is a local coordinate on U;, and k,, the ramification index at p;.

Given these U; and V', for ¢ € V let us split our function D into the sum of two functions.
For ¢ € V, by definition D(q’) is the sum over p’ € o~ *(¢') of the ramification indices
k. We will split the sum into pieces according to whether p’ is in Uy UUs U --- U U, or
outside it. Set U = U; UUy U ---U U, and define :

Dy(¢)= > kyand D > ky,
p'Ep~ (g )NU p'Ep~Hd'),pgU

so that D(¢') = Dy(¢') + Df;(¢'). (The “c¢” is for ”complement.)
Setd:D(Q) :kp1+kp2+"'+kpr'



(e) Show that for ¢’ sufficiently close to ¢, Dy(q') = d.

CraM: For ¢ sufficiently close to ¢, all points of p~!(¢') are in U. (This then shows
that for those points Df (¢') = 0, and hence using D = Dy + D§, and (e) that D(¢') =d
for all points ¢’ sufficiently close to ¢, thus proving the lemma.)

The negation of this claim is that there is a sequence of points ¢}, ¢}, ..., converging to
q, and for each ¢/ a point p, € ¢ ~!(¢}) which is outside of U. Since X is compact, such
a sequence would have a limit point p € X.

(f) Explain why we would have ¢(p) = q.
(9) Explain why this means that p € {p1,p2,...,p:}-

(h) Explain why this means that some p. (in fact, infinitely many p}) would have to
be in U.

(i) Explain why this is a contradiction, thus establishing the claim, the lemma, and
finally the theorem from class.

Solution.

(a) By definition a set S is open if for each points ¢ € S, there is an open set V C S
which contains q.

Fix d € N and set S = D7!(d). If ¢ € S then D(q) = d (by definition of S). By
the lemma, there is an open set V' containing ¢ so that D is constant on V, i.e.,
D(¢')=dforall ¢ € V. Thus V C S, and so S is open.

(b) One way to prove that a set S is open is to prove that its complement is closed.
Fix d € Nand set S = D71(d). Let S¢ = Y\ S be the complement of S in Y. From
the definition, a point ¢ € S¢ if and only if ¢ € S, i.e., if and only if D(q) # d.
From this we see that

s°= |J D7)

e€N,e#d

By part (a) each of the sets D'(e) is open, and an arbitrary union of open sets
is open, therefore S is open, and so S is closed.

(¢) By (a) and (b), for each d € N the set D~!(d) is both open and closed in Y. For a
connected topological space (like Y'), the only sets which are both open and closed
are @ and Y. Thus, for each d € N, D7!(d) is either empty or all of Y.

(d) Let ¢ be any point of Y, and d = D(q). Then q € D7*(d), so D7*(d) # @. By
part (c) this means that D~1(d) =Y, i.e., that for all ¢ € Y, D(¢') = d, so that
D is constant on Y.



(¢)

On each U; we know that ¢ looks like the map z; — zf P, As long as ¢ is close
enough to g so that ¢ € ¢(U;), then ¢~1(¢')NU; is the solutions to 2 = w, where
w is the number corresponding to ¢’ in the coordinate system on V.

Thus, once ¢’ is close enough to ¢, <p_1(q’ ) N U; contains k; points, since k= w

has exactly k; solutions in C when w # 0 (i.e, when ¢’ # ¢). Here is the usual
picture of the map z — z* illustrating this :

zZz

Thus, once ¢’ is close enough to ¢ to be inside all ¢(U;) (i.e, ¢ € —; ¢(Us)),
and when ¢ # ¢, then ¢~!(¢’) have exactly k,, points in U;, and so a total of
> i kp, = d points in U.

However, each of those points is unramified, i.e., their ramification index is 1. (We
saw this in class by a local description of what the “k” in the ramification index
means.) Thus Dy(q'), which is the some of the ramification indices of the points
of 71 (¢') N U is the sum of the number 1 over the d points in ¢! (¢') N U, and so
Dy(q') = d. (If ¢ = q then we already know that the points {py,...,p.} of o~1(q)
all lie in U, and that their ramfication indices sum to d — that is how we defined

d!)
Therefore, for all ¢’ sufficiently close to ¢ (including ¢’ = q) Dy(¢') = d.

To make the notation easier, let us assume that we have already passed to a
subsequence of the p; which converges to p, i.e., that lim;_,, p; = P.

We know that the ¢, converge to ¢, and that ¢(p) = ¢, for each i. Since ¢ is a
continuous map we therefore have

o@) = (hm p2> = lim ¢(p;) = lim ¢; = q.
1—>00 1—00 1—00

Since ¢(p) = ¢, 7 € ¢~ '(¢) = {p1, P2, - -, Pr}-

By (g), p = p; for some j, 1 < j < r, and by definition U; is an open set around
p;. Since the sequence {p}} is converging to p = p;, then there is some N so that
foralli > N, p} € Uj.

The p; were chosen so that no pj lies in any U;. The conclusion above is therefore
a contradiction, and so there is no such sequence ¢, converging to ¢, establishing
the claim. (And therefore the lemma, and then the theorem!)



