DUE DATE: JAN. 15, 2019

- 1. Suppose that $X \subset \mathbb{R}^n$ is a shape.
 - (a) If f_1 and f_2 are functions on \mathbb{R}^n , show that $f_1 = f_2$ on X (i.e., when restricted to X) if and only if $f_1 f_2$ is zero on X.
 - (b) If g is a function on \mathbb{R}^n which is zero when restricted to X, and h any function on \mathbb{R}^n , show that hg is zero when restricted to X.
 - (c) Now let X be the circle $\{(x, y) | x^2 + y^2 = 1\} \subset \mathbb{R}^2$. Take the following functions on \mathbb{R}^2 and organize them into groups according to their equality when restricted to X:

(1) 1; (2) y; (3)
$$x^2 + y^2$$
; (4) $x^2 - y^2$;
(5) $2x^2 + 1$; (6) $2x^2 - 1$; (7) $x^4 - y^4$; (8) $y^3 + x^2y$.

(I.e., group together the functions which are equal when restricted to X.)

[Math 813 only] (d) Let X be the unit circle as in part (c). Let f(x, y) be any polynomial in x and y. Prove that there is a polynomial of the form $g(x, y) = g_0(x) + g_1(x)y$ such that the restriction of f to X is equal to the restriction of g to X.

2. Let X be the unit circle $\{(x, y) \mid x^2 + y^2 = 1\} \subset \mathbb{R}^2$ and Y the unit sphere $\{(u, v, w) \mid u^2 + v^2 + w^2 = 1\} \subset \mathbb{R}^3$. Define a map $\varphi: X \longrightarrow Y$ by the rule $\varphi(x, y) = (xy, y^2, x)$.

- (a) Show that φ is well-defined. That is, show that if $(x, y) \in X$ then $\varphi(x, y) \in Y$.
- (b) Compute $\varphi^*(u)$, $\varphi^*(v)$, and $\varphi^*(w)$.
- (c) Compute $\varphi^*(3u^2 2vw + 5)$.
- (d) Let f be the function $5xy^3 + 7x^2 9y^2$ restricted to X. Find a polynomial g(u, v, w) on \mathbb{R}^3 so that $f = \varphi^*(g)$.

3. Let $X = \mathbb{R}$ and $Y = \mathbb{R}^2$. The ring of polynomial functions on X is $\mathbb{R}[x]$. The ring of polynomial functions on Y is $\mathbb{R}[x, y]$.

(a) The ring $\mathbb{R}[x]$ is a subring of $\mathbb{R}[x, y]$, i.e., the inclusion map $\psi_1: \mathbb{R}[x] \longrightarrow \mathbb{R}[x, y]$ is a ring homomorphism. Find a map $\varphi_1: Y \longrightarrow X$ such that pullback by φ_1 induces ψ_1 . (I.e., " $\varphi_1^* = \psi_1$ ".)

- (b) The map $\psi_2: \mathbb{R}[x, y] \longrightarrow \mathbb{R}[x]$ given by "setting y = 0" (i.e., $\psi_2(f(x, y) = f(x, 0))$ is also a ring homomorphism. Find a map $\varphi_2: X \longrightarrow Y$ so that $\varphi_2^* = \psi_2$.
- (c) How would you describe these maps geometrically? (I.e., in a picture or in words, what do they do?)

MINOR SUGGESTION: The fact that there is more than one x may make things more confusing. Relabelling one set of variables and describing the ring homomorphisms in the new variables may make things a bit clearer.