1. Let X and Y be two affine varieties, with rings of functions R[X] and R[Y]. In this problem we will use the theorem from the classes of Jan. 17th and 21st to prove that X and Y are isomorphic varieties if and only if R[X] and R[Y] are isomorphic rings.

(a) Explain why $(1_X)^* = 1_{R[X]}$

Here 1_X and $1_{R[X]}$ are being used in the category-theoretic sense. They are, respectively, the identity morphism $1_X: X \longrightarrow X$ and the identity ring homomorphism $1_{R[X]}: R[X] \longrightarrow R[X]$.

- (b) Suppose that $\varphi: X \longrightarrow X$ is a morphism of affine varieties and that $\varphi^* = 1_{R[X]}$. Explain why must have $\varphi = 1_X$.
- (c) Suppose that X and Y are isomorphic affine varieties. Writing out the definition of "isomorphic varieties" and applying the functor to rings, explain why R[X] and R[Y] are isomorphic rings.
- (d) Now suppose that R[X] and R[Y] are isomorphic rings. Write out the definition of "isomorphic rings" and use part (c) of the theorem as well as (b) above to show that X and Y are isomorphic varieties.

2. In this question we will see an example of a morphism of affine varieties which is a bijection on points, but which is not an isomorphism. (In other words, in the category of affine varieties, isomorphism implies more than just bijection.) Let $X = \mathbb{A}^1$ with ring of functions k[t], and let Y be the subset of \mathbb{A}^2 given by the equation $y^2 = x^3$.

- (a) Let $\varphi: X \longrightarrow \mathbb{A}^2$ be the map given by $\varphi(t) = (t^2, t^3)$. Show the image of φ lies in Y, so that φ defines a morphism $\varphi: X \longrightarrow Y$.
- (b) Show that φ is surjective. (i.e., given $(x, y) \in Y$, show that there is a t such that $\varphi(t) = (x, y)$.)
- (c) Show that φ is injective.
- (d) Draw a sketch of Y (\mathbb{R}^2 points only). One suggestion: from part (b) you know that Y is the image of φ , so you can use the parameterization given by φ to see what Y looks like.
- (e) Compute the image of the ring homomorphism $\varphi^*: R[Y] \longrightarrow R[X]$ (and recall that R[X] = k[t]). Is φ^* surjective?
- (f) Explain why φ is not an isomorphism of affine varieties.

3. Consider the following four affine varieties, all contained in \mathbb{A}^3 .

$$X = \left\{ (x_1, x_2, x_3) \middle| x_1^2 + x_2^2 - 1 = 0 \right\} \subset \mathbb{A}^3$$

$$Y = \left\{ (y_1, y_2, y_3) \middle| y_1^2 + y_2^2 - y_3^2 = 0 \right\} \subset \mathbb{A}^3$$

$$Z = \left\{ (z_1, z_2, z_3) \middle| z_1^2 + z_2^2 + z_3^2 - 625 = 0 \right\} \subset \mathbb{A}^3$$

$$W = \left\{ (w_1, w_2, w_3) \middle| w_1^2 + w_2^2 - w_3 = 0 \right\} \subset \mathbb{A}^3$$

(a) Draw sketches of X, Y, Z, and W.

Define a map $\varphi_1: X \longrightarrow \mathbb{A}^3$ by $\varphi_1(x_1, x_2, x_3) = (x_1x_3, x_2x_3, x_3).$

(b) Is the image of φ_1 contained in Y, Z, or W? (Justify your answer.)

Define a map $\varphi_2: X \longrightarrow \mathbb{A}^3$ by $\varphi_2(x_1, x_2, x_3) = (-9x_1 + 12x_2, 12x_1 - 16x_2, 20x_1 + 15x_2).$

(c) Is the image of φ_2 contained in Y, Z, or W? (Justify your answer.)

Define a map $\varphi_3: Y \longrightarrow \mathbb{A}^3$ by $\varphi_3(y_1, y_2, y_3) = (y_1, y_2, y_3^2)$.

(d) Is the image of φ_3 contained in X, Z, or W? (Justify your answer.)

One of the maps (b)-(d) has image in W.

(e) What is the pullback of $3\overline{w}_1 - \overline{w}_2^2 + \overline{w}_3 \in R[W]$ under this map?

Now we will try and go the other way, from a map of rings to a map of varieties. Define a ring homomorphism

$$R[X] = \frac{k[x_1, x_2, x_3]}{\langle x_1^2 + x_2^2 - 1 \rangle} \longleftarrow \frac{k[w_1, w_2, w_3]}{\langle w_1^2 + w_2^2 - w_3 \rangle} = R[W]: \psi$$

by the rule $\psi(\overline{w}_1) = 2\overline{x}_1, \ \psi(\overline{w}_2) = 2\overline{x}_2, \ \psi(\overline{w}_3) = 4.$

- (f) Check that this ring homomorphism is well-defined by showing that $\psi(\overline{w}_1^2 + \overline{w}_2^2 \overline{w}_3) = 0.$
- (g) What geometric map $\varphi: X \longrightarrow W$ does the ring homomorphism ψ correspond to? (Write your formula for φ in the form $\varphi(x_1, x_2, x_3) =$ (formulas in $x_1, x_2, x_3) \subset \mathbb{A}^3$ as in (b)–(d) above.)