1. Let $X = \mathbb{A}^n$ and for $2 \leq s \leq n$ let V_s be the open subset of X which is the complement of the linear space $x_1 = x_2 = x_3 = \cdots = x_s = 0$. Compute (analogously to the computation for \mathbb{A}^2 and s = 2) the ring of functions $\mathcal{O}_X(V_s)$. (You can make your life easier in the case s > 2 by appealing to your answer for s = 2.)

2. Let X be the affine variety described by the equation $xy - z^2 = 0$ in \mathbb{A}^3 , and let $U \subset X$ be the complement of $(0,0,0) \in X$. In this problem we will compute $\mathcal{O}_X(U)$ and see that it is equal to R[X].

The variety X is covered by the principal open sets U_x and U_y , with coordinate rings $k[x, y, z, 1/x]/\langle xy - z^2 \rangle \cong k[x, 1/x, z]$ and $k[x, y, z, 1/y]/\langle xy - z^2 \rangle \cong k[y, 1/y, z]$ respectively. Any function $g_1 \in R[U_x]$ can be written as a finite sum $g_1 = \sum a_{ij}x^iz^j$ and any function $g_2 \in R[U_y]$ can be written as a finite sum $g_2 = \sum b_{k\ell}y^kz^\ell$.

(a) What ranges of indices are valid in the expressions for g_1 and g_2 above?

We want to look at pairs (g_1, g_2) which agree on $U_x \cap U_y$. The expressions for g_1 and g_2 above are with respect to different variables. To compare them we need to write them in terms of the same variables.

- (b) Use the relation $y = \frac{z^2}{x}$ (valid on U_x , and hence also on $U_x \cap U_y$) to write g_2 in terms of the variables x and z.
- (c) In order for g_1 to be equal to g_2 , what must be the relation between the a_{ij} and the $b_{k\ell}$?
- (d) Considering the restrictions on the indices from part (a), your formula from (c) will imply additional restrictions on i and j. What are they?
- (e) For each *i* and *j* satisfying the conditions above, show that there is a monomial $x^p y^q z^r$ which is equal to $x^i z^j$ on U_x .
- (f) Explain why this means that the restriction homomorphism $R[X] \longrightarrow \mathcal{O}_X(U)$ is surjective.

3. Given a ring A and an element $f \in A$ we have been looking at the ring A[1/f] obtained by adjoining the additional element 1/f to A (and of course using ring operations to get more elements). More precisely the ring A[1/f] is the ring $A[y]/\langle yf-1 \rangle$. There is

a natural ring homomorphism $A \longrightarrow A[1/f]$, which is the composite of the ring homomorphisms $A \hookrightarrow A[y] \longrightarrow A[y]/\langle yf-1 \rangle$. We have seen in class that this homomorphism is not always injective. For instance, if $h \in A$ is an element so that $h \cdot f^n = 0$ in A for some $n \ge 1$, then in A[1/f] we compute that $h = (h \cdot f^n) \cdot \frac{1}{f^n} = 0 \cdot \frac{1}{f^n} = 0$.

The purpose of this question is to prove the converse direction: An element $h \in A$ is in the kernel of the map $A \longrightarrow A[1/f]$ only if there is an $n \ge 1$ such that $h \cdot f^n = 0$ in A. Suppose that h is such an element. This means that the image of h under the inclusion $A \hookrightarrow A[y]$ must be in the ideal $\langle yf - 1 \rangle$ in A[y]. Therefore there is a polynomial $g \in A[y]$ such that h = g(yf - 1). Since $g \in A[y]$ we can write g as $g = g_0 + g_1y + g_2y^2 + \cdots + g_ny^n$ with each $g_j \in A$.

- (a) Expand $g \cdot (yf 1)$ as a polynomial in y.
- (b) As a polynomial in y, h has degree 0. Since we have $h = g \cdot (yf 1)$, the coefficients of powers of y on both sides of the equality must be the same. Comparing coefficients, write down all the relations you obtain.
- (c) Show that $h \cdot f^{n+1} = 0$.

4. A topological space X is called *quasi-compact* if whenever $\{U_i\}_{i\in S}$ are a family of open subsets such that $\bigcup_{i\in S} U_i = X$ then there are a finite number of U_i 's which actually cover X. (The term *compact* is reserved for Hausdorff topological spaces with this finite subcover property. A topological space with the finite subcover property alone is called quasi-compact.) In this question we will show that affine varieties are quasi-compact.

- (a) Show that if U_{f_i} , $i \in S$ is a family of principal open subsets which cover an affine variety X, then there is a finite number which cover X. (SUGGESTION: Think about what the condition "the U_{f_i} cover X" means about the complement.)
- (b) Given an arbitrary cover of X by open sets $\{U_j\}, j \in S$, use the fact that the principal open subsets are a basis for the Zariski topology and part (a) to show that a finite number of the U_j are sufficient to cover X.

5. In class we have seen that if X is an affine variety and U_f a principal open subset, then U_f is an affine variety. Perhaps every open subset is an affine variety? The purpose of this question is to show that the answer to this is no. Let $U = \mathbb{A}^2 \setminus \{(0,0)\}$. Recall that we have computed that $\mathcal{O}_{\mathbb{A}^2}(U) = k[x, y] = \mathcal{O}_{\mathbb{A}^2}(\mathbb{A}^2)$.

- (a) Let $\varphi \colon U \hookrightarrow \mathbb{A}^2$ be the inclusion map. Compute the ring homomorphism φ^* .
- (b) Maps between affine varieties are completely determined by the pullback maps. If U were an affine variety, explain why φ would have to be an isomorphism.
- (c) Show that U is not an affine variety.