
Math 413/813 Homework Assignment 8
due date: Mar. 12, 2019

1. Although we are talking about Pn over algebraically closed fields, and usually over
C, we can consider Pn over any field. If we consider Pn over a finite field, then P

n only
has finitely many points with coordinates in the field. In this problem we will count the
number of points in two different ways. Let p be a prime number.

(a) How many points does Am have over Fp?

(b) How many elements λ ∈ Fp, λ 6= 0 are there?

(c) Considering Pn as An+1 \ {(0, . . . , 0)} modulo the relation of scaling by elements
of F∗

p, how many points does Pn have over Fp?

(d) We have seen that the complement of a standard An coordinate chart in Pn is a
P
n−1. Continuing in this way we get a decomposition of Pn into disjoint subsets:

P
n = A

n ⊔ A
n−1 ⊔ A

n−2 ⊔ · · · ⊔ A
1 ⊔ A

0.

Use this decomposition and part (a) to give a second formula for the number of
points of Pn over Fp.

(e) Check that your answers in (c) and (d) are the same.

(f) As a specific example, let p = 2. How many points does P2 have over F2? How
many lines are there in P2 over F2? How many points are on each line?

Remarks. (1) We could also have considered the case that the field is Fq, with q = pr

a prime power. The formulas, with q taking the place of p, are the same. (2) If you
have seen the card game “Spot It”, you may want to also do the computations in (f)
with p = 7.

2. In Pn, the zero locus of an equation of the form a0Z0 + a1Z1 + · · ·+ anZn is called
a hyperplane. Given any k hyperplanes, H1, . . . , Hk in Pn with k 6 n, show that their
intersection H1 ∩H2 ∩ · · · ∩Hk is nonempty.

3. In this problem we will consider subvarieties of P1.

(a) Let X and Y be the homogeneous coordinates on P1, and let p = [α : β] be a point
of P1. Show that the homogeneous polynomial G = βX − αY has only a single
zero, and that zero is at p.
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(b) Let F be a homogeneous polynomial of degree d in X and Y . The zeros of F are
a finite set of points. Show that the number of points, counted with multiplicity
(i.e, counted according to the number of times each factor appears) is exactly d.
As always, you should assume that the field k is algebraically closed.

4. We have seen that affine varieties are completely determined by their ring of global
functions. In contrast, projective varieties are not determined by their ring of functions,
in fact, they have very few global functions at all.

(a) Show that the only global algebraic functions on P1 are the constant functions. Do
this by considering functions f0 and f1 in the standard coordinate charts U0 and
U1, and looking at the conditions for these functions to agree on the intersection.

(b) Similarly show that the only global algebraic functions on P2 are the constant
functions. You can do this by patching as in part (a), but perhaps a simpler
argument is to use the fact that any two points p, q ∈ P

2 are contained in a unique
line, and that each line is a P1, and part (a).

After doing the question we see that the rings of global functions on P1 and P2 are the
same, but P1 and P

2 are certainly not isomorphic!

Note: In (a) the idea is to do a “patching” computation like we have previously done
to determine the ring of functions on an open subset of an affine variety, althought this
time the set is all of P1. We know two affine open subsets, U0 and U1 which cover P1,
and we know how they are glued together on their common intersection, and that is all
we need to compare a function f0 on U0 restricted to U0 ∩ U1 and a function f1 on U1

restricted to U0 ∩ U1
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