DUE DATE: MAR. 29, 2018

1. Let A be a ring and

 $0 \xrightarrow{i} M_1 \longrightarrow M_2 \xrightarrow{\pi} M_3 \longrightarrow 0$

a short exact sequence of A-modules. For any A-module N, show that the following two sequences (obtained by applying $\operatorname{Hom}_A(N, -)$ and $\operatorname{Hom}_A(-, N)$ respectively) are exact.

(a)
$$0 \longrightarrow \operatorname{Hom}(N, M_1) \xrightarrow{i_{\circ}} \operatorname{Hom}(N, M_2) \xrightarrow{\pi_{\circ}} \operatorname{Hom}(N, M_3)$$
$$\tau \longmapsto i \circ \tau; \quad \psi \longmapsto \pi \circ \psi$$

(b)
$$0 \longrightarrow \operatorname{Hom}(M_3, N) \xrightarrow{\circ \pi} \operatorname{Hom}(M_2, N) \xrightarrow{\circ i} \operatorname{Hom}(M_1, N)$$

 $\psi \longmapsto \psi \circ \pi; \quad \tau \longmapsto \tau \circ i$

2. In this problem we will study a few aspects of flat and projective modules.

Recall that an exact sequence $0 \longrightarrow M_1 \xrightarrow{i} M_2 \xrightarrow{\pi} M_3 \longrightarrow 0$ is said to <u>split</u> if $M_2 \cong M_1 \oplus M_3$ and if, under the isomorphism, *i* corresponds to the natural injection $M_1 \hookrightarrow M_1 \oplus M_3$ and π the natural projection $M_1 \oplus M_3 \longrightarrow M_3$. One criterion for a sequence to split (which may have appeared in Algebra I) is the existence of a map $\psi \colon M_3 \longrightarrow M_2$ such that $\psi \circ \pi = \operatorname{Id}_{M_3}$. Equivalently, the sequence splits if there is a map $\tau \colon M_2 \longrightarrow M_1$ such that $\tau \circ i = \operatorname{Id}_{M_1}$.

- (a) Let P be a projective A-module. Show that every exact sequence $0 \longrightarrow M_1 \longrightarrow M_2 \longrightarrow P \longrightarrow 0$ splits.
- (b) Similarly, let I be an injective A-module. Show that every exact sequence $0 \longrightarrow I \longrightarrow M_2 \longrightarrow M_3 \longrightarrow 0$ splits.

In class we have seen that every A-module M is the quotient of a free module (we discussed this when discussing presentations).

- (c) Let P be a projective module. Show that there is a free module F and a decomposition $F = P \oplus P'$ (where P' is some other A-module). I.e., that "every projective module is the direct summand of a free module".
- (d) Show conversely that if F is a free module, and if $F \cong P_1 \oplus P_2$, then each of P_1 and P_2 are projective modules. (SUGGESTION: Prove that P_i has the defining property of a projective module, deducing this from the fact that a free module has this property, and the splitting as a direct sum.)

Thus, by combining (c) and (d) we have an alternate characterization of projective modules : an A-module P is projective if and only if it is the direct summand of a free module.

- (e) Suppose that an A-module N decomposes as a direct sum : $N = N_1 \oplus N_2$. Show that N is a flat A-module if and only if both N_1 and N_2 are flat A-modules.
- (f) Show that every projective A-module is also a flat A-module.

REMARK. One can also show that every finitely generated flat module is projective, so for finitely generated A-modules flat and projective are equivalent. However, there are (non-finitely generated) flat modules which are not projective. For example, the ring $\mathbb{Z}[\frac{1}{2}]$ is a flat module over \mathbb{Z} , but not projective. (To see that $\mathbb{Z}[\frac{1}{2}]$ is not projective, note that every element of $\mathbb{Z}[\frac{1}{2}]$ is infinitely 2-divisible : given any $x \in \mathbb{Z}[\frac{1}{2}]$, and any $m \ge 0$ there exists $y \in \mathbb{Z}[\frac{1}{2}]$ such that $2^m y = x$. If $\mathbb{Z}[\frac{1}{2}]$ were a projective module, then by (c) it would be a direct summand of a free module. But no element of a free \mathbb{Z} -module is infinitely 2-divisible.)

3. Let A = k be a field.

- (a) Show that every A-module is projective.
- (b) Show that every A-module is injective.

Now suppose that A is a domain (and commutative ring) for which every projective module is injective. We will now show that A is a field. Do do this, it suffices to show that for every $a \in A$, $a \neq 0$, there is a $b \in A$ such that $a \cdot b = 1$.

(c) Given $a \in A$, let $\varphi_a \colon A \longrightarrow A$ by the multiplication by $a \text{ map} \colon \varphi_a(x) = ax$. Since A is a free module, it is also projective and so (by hypothesis) an injective module. Use the diagram

$$0 \xrightarrow{\varphi_a} A \xrightarrow{\varphi_a} A$$

$$Id_A \downarrow$$

$$A$$

to show that there is a $b \in A$ with ab = 1.