
Math 280 Answers for Homework 11

1. By Green’s theorem, one way to find the area of a region in R
2 is to integrate the

vector field F = (− y
2
, x

2
) around the outside of the boundary.

We already know a parameterization of the hypocycloid c (from Homework 6, # 2):

x(θ) = cos3(θ) (x′(θ), y′(θ)) = (−3 cos2(θ) sin(θ), 3 cos(θ) sin2(θ))

y(θ) = sin3(θ) F = (− sin3(θ)
2

, cos3(θ)
2

)

for 0 ≤ θ ≤ 2π.

The dot product of F with the velocity vector of the parameterization is

F · (x′, y′) =
3

2
(cos2(θ) sin4(θ) + cos4(θ) sin2(θ))

=
3

2
cos2(θ) sin2(θ)

=
3

8
sin2(2θ)

So the integral becomes

∫

c

F · ds =
3

8

∫ 2π

0

sin2(2θ) =
3

8
π

2.

(a) The region V is a cylinder of radius 3 with a smaller cylinder of radius 1 removed:
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The boundary surface comes in four natural pieces: the top disk, the bottom disk,
the outside cylinder, and the inside cylinder.

(b) Piece one: the top of the cylinder (oriented upwards)

x(r, θ) = r cos(θ) Tr = (cos(θ), sin(θ), 0)
y(r, θ) = r sin(θ) Tθ = (−r sin(θ), r cos(θ), 0)
z(r, θ) = 2 N = (0, 0, r)

for 1 ≤ r ≤ 3, 0 ≤ θ ≤ 2π.

The normal is oriented upwards as it should be. With this parameterization, we
have F = (2r cos(θ), r3 cos(θ) sin2(θ), 2r2 sin(θ) cos(θ)), and

F ·N = 2r3 sin(θ) cos(θ) = r3 sin(2θ).

If S1 is the top of the cylinder, this gives

∫∫

S1

F · dS =

∫ 3

1

∫ 2π

0

r3 sin(2θ) dθ dr = 0.

Piece two: the bottom of the cylinder (oriented downwards)

x(r, θ) = r cos(θ) Tr = (cos(θ), sin(θ), 0)
y(r, θ) = r sin(θ) Tθ = (−r sin(θ), r cos(θ), 0)
z(r, θ) = 0 N = (0, 0, r)

for 1 ≤ r ≤ 3, 0 ≤ θ ≤ 2π.

We need to use the downwards oriented normal, or N = (0, 0,−r) (although in this
case it doesn’t make much difference). We have F = (2r cos(θ), r3 cos(θ) sin2(θ), 0),
and so F · N = 0. If S2 is the bottom part of the cylinder, this gives

∫∫

S2

F · dS = 0.
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Piece three: the outside surface, oriented outwards.

x(v, θ) = 3 cos(θ) Tθ = (−3 sin(θ), 3 cos(θ), 0)
y(v, θ) = 3 sin(θ) Tv = (0, 0, 1)
z(v, θ) = v N = (3 cos(θ), 3 sin(θ), 0)

for 0 ≤ v ≤ 2, 0 ≤ θ ≤ 2π.

The normal vector is pointing outwards, as it should be. We have

F = (6 cos(θ), 27 cos(θ) sin2(θ), 9v cos(θ) sin(θ)),

with F · N = 18 cos(θ) + 81 cos(θ) sin3(θ).

If S3 is the outside surface, this gives

∫∫

S3

F · dS =

∫ 2

0

∫ 2π

0

18 cos2(θ) + 81 cos(θ) sin3(θ) dθ dv = 36π

Piece four: the inside surface, oriented inwards.

x(v, θ) = cos(θ) Tθ = (− sin(θ), cos(θ), 0)
y(v, θ) = sin(θ) Tv = (0, 0, 1)
z(v, θ) = v N = (cos(θ), sin(θ), 0)

for 0 ≤ v ≤ 2, 0 ≤ θ ≤ 2π.

Here the normal is pointing outwards, and we need to use N = (− cos(θ),− sin(θ), 0)
instead. We have

F = (2 cos(θ), cos(θ) sin2(θ), v cos(θ) sin(θ)),

with F · N = −2 cos2(θ) − cos(θ) sin3(θ).

If S4 is the inside surface, this gives

∫∫

S4

F · dS =

∫ 2

0

∫ 2π

0

−2 cos2(θ) − cos(θ) sin3(θ) dθ dv = −4π.
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Therefore, if S is the oriented boundary surface made up of S1, S2, S3, and S4

together, we have

∫∫

S

= 0 + 0 + 36π − 4π = 32π.

(c) Div(F) = 2 + 3xy. If V is the cylinder (with the smaller cylinder removed) then
the integral of xy over V is zero by symmetry, and so the integral of Div(F) over
V is the same as the integral of 2 over V , i.e., twice the volume of V , so

∫∫∫

V

Div(F) dV = 2(volume of V ) = 2(2)(32
− 1)π = 32π.

3. We’re starting with F(x, y, z) = (y, z, x2) on R
3.

(a) We can use the usual parameterization of the unit sphere:

x(φ, θ) = sin(φ) cos(θ) Tφ = (cos(φ) cos(θ), cos(φ) sin(θ),− sin(φ))
y(φ, θ) = sin(φ) sin(θ) Tθ = (− sin(φ) sin(θ), sin(φ) cos(θ), 0)
z(φ, θ) = cos(φ) N = (sin2(φ) cos(θ), sin2(φ) sin(θ), sin(φ) cos(φ))

for 0 ≤ φ ≤ π/2, 0 ≤ θ ≤ 2π.

The normal vector is oriented outwards. In this parameterization the vector field
becomes F = (sin(φ) sin(θ), cos(φ), sin2(φ) cos2(θ)), and the dot product of the
vector field and normal vector is

F · N = sin3(φ) sin(θ) cos(θ) + sin2(φ) cos(φ) sin(θ) + sin3(φ) cos(φ) sin2(θ).

Note that only the last term : sin3(φ) cos(φ) sin2(θ) will contribute anything to
the integral, since (by integrating by θ) first, the other terms give zero.

The integral becomes

∫∫

S1

F · dS =

∫ 2π

0

∫ π/2

0

sin3(φ) cos(φ) sin2(θ) dφ dθ =
π

4
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(b) Parameterizing S2:

x(r, θ) = r cos(θ) Tr = (cos(θ), sin(θ), 0)
y(r, θ) = r sin(θ) Tθ = (−r sin(θ), r cos(θ), 0)
z(r, θ) = 0 N = (0, 0, r)

for 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π.

The normal is pointing upwards. In this parameterization the vector field becomes
F = (r sin(θ), 0, r2 cos2(θ)), and the dot product with the normal is

F ·N = r3 cos2(θ).

Therefore we have

∫∫

S2

F · dS =

∫ 1

0

∫ 2π

0

r3 cos2(θ) dθ dr =
π

4
.

(c) The vector field G = ( z2

2
, x3

3
, y2

2
) is one of many with Curl(G) = F.

(d) Parameterizing the unit circle c:

x(θ) = cos(θ) (x′(θ), y′(θ), z′(θ)) = (− sin(θ), cos(θ), 0)

y(θ) = sin(θ) G = (0, cos3(θ)
3

, sin2(θ)
2

)
z(θ) = 0

for 0 ≤ θ ≤ 2π.

The dot product of G with the velocity vector is G · (x′, y′, z′) = cos4(θ)
3

, giving

∫

c

G · ds =
1

3

∫ 2π

0

cos4(θ) dθ

=

(

1

12
cos3(θ) sin(θ) +

1

8
cos(θ) sin(θ) +

1

8
θ

)θ=2π

θ=0

=
π

4
.
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(e) Explanation one:

If F is defined on all of R
3, and Div(F) = 0 then there is some vector field G with

Curl(G) = F. So if S1 and S2 are two oriented surfaces with the same oriented
boundary curve c, then

∫∫

S1

F · dS =

∫

c

G · ds =

∫∫

S2

F · dS,

where the two equalities are obtained by applying Stokes’ theorem, and using
Curl(G) = F.

Explanation two:

Let V be the volume enclosed by S1 and S2. The oriented boundary of V is S1

and S2 with opposite orientations. But then by the divergence theorem:

∫∫

S1

F · dS −

∫∫

S2

F · dS =

∫∫∫

V

Div(F) dV = 0,

so again the two flux integrals are equal.

4. We’re starting with the vector field F(x, y, z) =
(

−y
x2+y2 ,

x
x2+y2 , 0

)

, which is defined on

R
3 minus the z-axis.

(a) For c1 the unit circle in the xy-plane (we can use the parameterization from 3(d)):

x(θ) = cos(θ) (x′(θ), y′(θ), z′(θ)) = (− sin(θ), cos(θ), 0)
y(θ) = sin(θ) F = (− sin(θ), cos(θ), 0)
z(θ) = 0

for 0 ≤ θ ≤ 2π.

The dot product of vector field and velocity vector is F · (x′, y′, z′) = sin2(θ) +
cos2(θ) = 1, giving

∫

c1

F · ds =

∫ 2π

0

1 dθ = 2π.
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(b) The calculation for the unit circle c2 lifted to z = 3 is almost identical:

x(θ) = cos(θ) (x′(θ), y′(θ), z′(θ)) = (− sin(θ), cos(θ), 0)
y(θ) = sin(θ) F = (− sin(θ), cos(θ), 0)
z(θ) = 3

for 0 ≤ θ ≤ 2π.

The dot product of vector field and velocity vector is again F · (x′, y′, z′) = 1, and
so

∫

c2

F · ds =

∫ 2π

0

1 dθ = 2π.

(c) Shifting the unit circle in the x-direction by 3 gives us

x(θ) = cos(θ) + 3 (x′(θ), y′(θ), z′(θ)) = (− sin(θ), cos(θ), 0)

y(θ) = sin(θ) F = (− sin(θ)
10+6 cos(θ)

, cos(θ)+3
10+6 cos(θ)

, 0)

z(θ) = 0

for 0 ≤ θ ≤ 2π.

The dot product of vector field and velocity vector is

F · (x′, y′, z′) =
1 + 3 cos(θ)

10 + 6 cos(θ)
.

The anti-derivative of 1+3 cos(θ)
10+6 cos(θ)

is a bit hard to find (sorry – I didn’t mean for it

to be so difficult): an anti-derivative is arctan(tan(θ/2)) − arctan(tan(θ/2)/2).

The fact that the anti-derivative is periodic gives

∫

c3

F · ds =

∫ 2π

0

1 + 3 cos(θ)

10 + 6 cos(θ)
dθ

= (arctan(tan(θ/2)) − arctan(tan(θ/2)/2))θ=2π
θ=0 = 0.

7



(d)

Curl(F) =

(

0, 0,
2

x2 + y2
−

2(x2 + y2)

(x2 + y2)2

)

= (0, 0, 0).

To show that
∫

c3
F · ds = 0, let S3 be the disk with c3 as a boundary oriented

upwards, then Stokes’ theorem gives

∫

c3

F · ds =

∫∫

S3

Curl(F) · dS = 0.

To show that the answers in (a) and (b) should be the same, let S12 be the cylinder
x2 + y2 = 1, 0 ≤ z ≤ 3, oriented outwards. This circle has c1 and c2 as boundary
curves, but to get the orientation compatible with the orientation on S12, we have
to travel around c2 backwards. So, in this case Stokes’ theorem gives

∫

c1

F · ds −

∫

c2

F · ds =

∫∫

S12

Curl(F) · dS = 0,

and so
∫

c1

F · ds =
∫

c2

F · ds.

(e) Any surface S with boundary c1 or c2 would have to cross the z-axis. Since F

isn’t defined on the z-axis, we can’t apply Stokes’ theorem to integrate over S.

5. The vector field

F(x, y, z) =

(

x

(x2 + y2 + z2)3/2
,

y

(x2 + y2 + z2)3/2
,

z

(x2 + y2 + z2)3/2

)

,

is defined everywhere but the origin.

(a) If S is any closed surface not containing the origin, and V the region that it
surrounds, then we can apply the divergence theorem to compute

∫∫

S
F · dS:

∫∫

S

F · dS =

∫∫∫

V

Div(F) dV = 0,

since Div(F) = 0.

(b) Now suppose that S is any closed surface that surrounds the origin. We can’t
apply the divergence theorem to the region inside S since F is not defined at the
origin.
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But, if we let Sε be a small sphere of radius ε around the origin (small enough to
be contained inside of S), and V the region between Sε and S, then we can apply
the divergence theorem to V .

If we orient S outwards, and also orient Sε outwards, then the orientation on S is
right for the divergence theorem, but Sε should be reversed. Switching the sign,
the divergence theorem then gives us:

∫∫

S

F · dS −

∫∫

Sε

F · dS =

∫∫∫

V

Div(F) dV = 0,

or
∫∫

S
F · dS =

∫∫

Sε

F · dS.

This shows that the value of
∫∫

S
F · dS doesn’t depend on the surface S which

surrounds the origin, since it’s equal to the integral over any sufficiently small
sphere surrounding the origin, and since we can always find a common such sphere
for any two surfaces S and S ′ surrounding the origin.

The actual value of this flux integral over any sphere around the origin was com-
puted in Homework 10 question 5 to be

∫∫

Sε

F · dS = 4π.
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