
Math 280 Answers for Homework 2

1. The region U = {(x, y) | |y| ≤ sin(x)}, consists of infinitely many disconnected
“lobes”:

each one associated to an interval x ∈ [2kπ, (2k + 1)π] on the x-axis for k ∈ Z, i.e.,
those x values where sin(x) ≥ 0. The grey points (those points with |y| < sin(x)) are
the interior points, and the dark black points (those with |y| = sin(x)) are the boundary
points.

2. If u(x, y, t) = e−2t sin(3x) cos(2y), then

ux(x, y, t) = 3e−2t cos(3x) cos(2y),

uy(x, y, t) = −2e−2t sin(3x) sin(2y), and

ut(x, y, t) = −2e−2t sin(3x) cos(2y).

If u is the height of a vibrating membrane (like a drum) above (x, y) at time t, then at a
point (x0, y0) and time t0, ut(x0, y0, t0) represents how fast the membrane is moving up
and down over top the point (x0, y0) at time t0. For the other two derivatives, imagine
the surface of the membrane at this frozen instant t0, then ux(x0, y0, t0) is the rate of
change of the height of the graph going in the x-direction, and uy(x0, y0, t0) the rate of
change going on the y-direction.

3. If F : R
2 → R

3 is the function F(x, y) =
(

sin(πx) cos(πy), yexy, x2 + y3

)

, then

DF(x, y) =





π cos(πx) cos(πy) −π sin(πx) sin(πy)
y2exy (1 + xy)exy

2x 3y2



 , so DF(1, 2) =





−π 0
4e2 3e2

2 12



 .

If we head in the direction ~v = (3,−2), this means that the instantaneous rate of change
of the three functions is given by

DF(1, 1)~v =





−π 0
4e2 3e2

2 12





[

3
−2

]

=





−3π
6e2

−18



 .
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In other words, if we’re at the point (1, 2), and we head off in the direction (3,−2), the
instantaneous rate of change of sin(πx) cos(πy) is −3π, the instantaneous rate of change
of yexy is 6e2, and the instantaneous rate of change of x2 + y3 is -18.

4. We’re starting with the function

f(x, y) =











y2x

x2 + y2
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

(a) If we restrict to the x-axis, i.e. points of the form (x, 0), we get the function

f(x, 0) =











0

x2 + 02
if (x, 0) 6= (0, 0)

0 if (x, 0) = (0, 0)

which can be more succinctly described by simply saying that f(x, 0) = 0 for all
values of x.

The partial derivative fx(0, 0) certainly exists. According to the definition of
fx(0, 0) we only need to understand f(x, 0) and see if it has an x-derivative at
x = 0. The zero function (which is what f(x, 0) is) is certainly differentiable –
any constant function is. Its derivative, like all constant functions, is 0. Thus
fx(0, 0) = 0.

We can also go directly to the definition of the partial derivative:

fx(0, 0) = lim
x→0

f(x, 0) − f(0, 0)

x
= lim

x→0

0 − 0

x
= 0,

but it seems simpler just to think about the restriction as above.

(b) Restricting the function f to the y-axis, gives f(0, y) = 0, just like the restriction
to the x-axis. For the same reasons, fy(0, 0) exists and is zero.

(c) If f were differentiable at (0, 0) then its derivative matrix would be

Df(0, 0) =

[

∂f

∂x
(0, 0)

∂f

∂y
(0, 0)

]

=
[

0 0
]

(d) If f were differentiable at (0, 0) then the instantaneous rate of change in the
direction ~v = (1, 1) would be given by

Df(0, 0)~v =

[

0 0
] [

1
1

]

= 0
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(e) If we restrict f to points of the form (t, t), we get the function

f(t, t) =











t3

t2 + t2
if (t, t) 6= (0, 0)

0 if (t, t) = (0, 0)

or simply the function f(t, t) = t/2.

As a function of t, this is a line with slope 1

2
. Its rate of change at t = 0 is therefore

also 1

2
. You can also write this more formally: d

dt
f(t, t) = 1

2
, and then plugging in

t = 0 gives 1

2
.

(f) If f were differentiable, the answers to (d) and (e) would be the same. A conse-
quence of the definition of differentiability is that the matrix gives the instanta-
neous rate of change of f in all directions from (0, 0).

(g) Therefore, f is obviously not differentiable at (0, 0).

It’s worthwhile thinking a bit more about the function f . To try and see what it
looks like, let’s restrict it to lines of the form (vxt, vyt) for some nonzero vector
~v = (vx, vy):

f(vxt, vyt) =















vxv
2
yt

3

(v2
x + v2

y)t
2

if (vxt, vyt) 6= (0, 0)

0 if (vxt, vyt) = (0, 0)

or simply f(vxt, vyt) =

(

vxv
2
y

v2
x + v2

y

)

t.

This shows us that the restriction of f to any direction ~v is just a linear function

of t, with t-slope
vxv2

y

v2
x
+v2

y

, which is zero along the x and y axes. Two views of the

graph are shown below:

In any direction ~v, the derivative exists and is equal to
vxv2

y

v2
x+v2

y

. Since this doesn’t

depend linearly on (vx, vy) it is clear that f is not differentiable at (0, 0). This was
exactly the kind of example mentioned in the tutorial.
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5. This time we’re starting with the function f(x, y) = 25 − x2 − 2y2.

(a)
f(2, 3) = 3

fx(x, y) = −2x fx(2, 3) = −4
fy(x, y) = −4y fx(2, 3) = −12

(b)
gx(x, y) = m gx(2, 3) = m
gy(x, y) = n gx(2, 3) = n

(c) Clearly we want m = −4 and n = −12. The graph of −4x−12y+c passes through
−4(2) − 12(3) + c = −44 + c over (2, 3). In order for this to be 3 we need c = 47.

(d) g(2 + t vx, 3 + t vy) = −4(2 + t vx) − 12(3 + t vy) + 47 = 3 + (−4vx − 12vy)t. This
has derivative −4vx − 12vy at t = 0 (or for any t).

(e) f(2 + t vx, 3 + t vy) = 3 + (−4vx − 12vy)t − (v2
x + 2v2

y)t
2. This also has derivative

−4vx − 12vy when t = 0.

(f) The fact that the answers to (d) and (e) are the same is certainly the behaviour we
expect from a differentiable function – it’s an indication that f is well approximated
by its tangent plane over (2, 3).

This behaviour (that the instantaneous rate of change along lines agrees with that
of the plane determined by the partial derivatives) is not enough to guarantee that
a function is actually differentiable, although it takes a bit of work to construct
an example. (Challenge: find one for yourself).

Our function f is differentiable though. For instance, the partial derivatives
fx(x, y) = −2x and fy(x, y) = −4y are certainly continuous, and we know that’s
enough to imply the differentiability of f .

(g) Actually, although it may not immediately appear like it, the definition of what it
means for F : R

2 −→ R
3 to be differentiable is exactly that the separate component

functions F1, F2, and F3 be individually differentiable. It is equivalent to the
definition of differentiabilty given in the book.

(h) The derivative of a single function f : R
n −→ R at a point (x1, . . . , xn) is some-

thing which computes the instantaneous rate of change of f in any direction
~v = (v1, . . . , vn), and this association is linear in ~v. Therefore, the derivative
DF of a function F : R

n −→ R
m at a point (x1, . . . , xn) should be something

which computes the m different instantaneous rates of change in a direction ~v,
and the dependence of the rates of change on ~v should again be linear. But a
linear function from n-vectors to m-vectors is exactly given by an (m×n) matrix.
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