Math 280 Answers for Homework 9

(a) Geometrically, the reason that zy = a and y = bz have only a single solution
is that the line y = bx intersects the curve xy = a in only a single point in the

positive quadrant:
y = bz

Ty = a

Algebraically, we can see this by trying to solve for  and y: substituting y = bx

into zy = a gives x(bxr) = a or x = y/a/b and y = bx = Vab as the unique
solutions with z and y positive.

(b) If u = zy and v = y/x, the same steps as the algebraic solution in part (a) give
r = /u/v and y = /uv.

(¢) The region is sketched below:

y = 4x

zy =3

xzy =1

In terms of u, v coordinates, this region is a rectangle: 1 <u < 3,1 <v <4.

(¢) The determinant of the derivative matrix for the change of variables is
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(d) The function f(z,y) = 23y is (1/u/v)*(y/uv)” = v’v? in terms of u and v.

In order to write the integral over the region R in terms of a u, v integral we have
to:

(i) Work out the region R in terms of u, v coordinates.
(ii) Rewrite the function f in terms of u and v, and

(ili) Include the Jacobian factor to take the distortion in area due to the param-
eterization into account.

This gives us:
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2. This time the region R is the one contained within the curves zy = 1, zy = 2,
2%y = 1, and 2%y = 3, and the function is f(z,y) = 2%y>.

u=1

(a) If u = 2%y and v = xy then we can solve algebraically for z and y. Substituting,
we get u = 2%y = x(xy) = 2v or x = u/v, which then gives y = v?/u.

(b) In terms of w and v, the region R again becomes a rectangle 1 < u < 3,1 <wv <2,
(c) f=2%%= (u/v)*(v*/u)* = v* (or, f = (zy)? = v?, which is faster).
(d) The Jacobian factor is
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(e) Using the change of variables theorem, the integral becomes
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(a) The region of integration is the region below the paraboloid z = 8 — 22 — y? and
above z = —3, restricted to the cylinder 2% 4+ y? < 8.
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(b) The region of integration is the part of the unit ball in the positive octant.

The first step is easy:
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But this integral is somewhat awkward to work out. It might be better to split it
into two parts:

r=4/1—y2
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To deal with the second half, we can switch the order of integration:
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Which we recognize as the same integral (with the roles of x and y reversed) as
we did in the first part, up to a factor of —%.

This means that we must have
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4. The region V of integration is a tetrahedron with vertices (0,0, 0), (1,1,0), (0,1,0),
and (1,1, 1). Here are three views of the region:

> b B

The shadows of V' on the zy, yz and xz planes are shown below:

V 4 4

zy-plane yz-plane xz-plane

The six possible orders of integration are then
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(a)

The function is positive over the circle 2% + y? < 9.

One possible parameterization is to parameterize the circle using polar coordi-
nates, and then use the equation of the graph to get the z coordinate. This
parameterization is

x(r,0) = rcos(0) T, (cos(8),sin(@), —2r)
y(r,0) = rsin(f) with Ty = (—rsin(f),rcos(h),0)
2(r,0) = 9—1? N = T, xTy=(2r*cos(f),2r?sin(h),r)

where 0 <r <3,0<60 < 27.

We can also use the general form for the graph of a function:

y(u’ U) - with T, — (07 1, fv)
Z(U,U) = f(U,U) N =T, xT,= (_fua _fv> 1)

For f(x,y) =9 — 2% — y? this gives the normal vector N = (2u, 2v, 1), with (u, v)
in the circle u? + v? < 9.

The parameterizations of the piece of the paraboloid in the first octant are similiar.

Using polar coordinates:

x(r,0) = rcos(0) T, = (cos(f),sin(0),2r)
y(r,0) = rsin(0) with T, = (—rsin(0),rcos(d),0)
2(r,0) = r? N = T, x Ty=(-2rcos(f), —2r?sin(f),r)

with 0 <r <o00,0<6<7/2.
Or, using the general form for the graph of a function above, we could use z(u, v) =

u, y(u,v) = v, and z(u,v) = f(u,v) = u? + v>. By the formulas from part (a),
this gives

T, =(1,0,2u), T, = (0,1,2v), and N = (—2u, —2v, 1).



(c) This one is a little trickier to parameterize. The surface is a torus (i.e., a doughnut).

z

We can parameterize the center circle of the torus by ¢(0) = (3 cos(6), 3sin(f),0).

In the slice of the torus around that point, we can draw two vectors which generate
the circle (a “moving frame” around the center point ¢), a(f) = (0,0,1) and

b(0) = (cos(6),sin(#),0).

Now for any angle «, the linear combination a(6) cos(a) 4 b(#) sin(«), when added
to the center point ¢(f) will give us a point on the circle around the center point
c(#). Putting this together, we can parameterize the torus by

z(0,a) = 3cos(#) + cos(f) cos(a) = (3 + cos(a)) cos(6)
y(0,«) = 3sin(f) + sin(f) cos(a) = (3 + cos(a)) sin(6)

z2(0,a) = sin(«)

Giving
T, — <—(3+00s(a))sin(9), (3 + cos(a)) cos(6), o)
T, = <— sin(«) cos(#), —sin(a) sin(0), cos(a))
and
N = T@ X Ta

= ((3 + cos(a)) cos(a) cos(8), (3 + cos(a)) cos(ax) sin(f), (3 + cos(av)) sin(a)) :



