DUE DATE: OCT. 20, 2005

1. Compute these matrix multiplications:

(a) $\begin{bmatrix} 2 & -1 \\ 5 & 4 \\ 7 & -4 \end{bmatrix} \begin{bmatrix} 2 & -1 & -2 \\ 3 & 5 & 1 \end{bmatrix}$	(b) $\begin{bmatrix} 2 & -1 & -2 \\ 3 & 5 & 1 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 5 & 4 \\ 7 & -4 \end{bmatrix}$
(c) $\begin{bmatrix} -3 & 1 \\ 6 & 5 \end{bmatrix} \begin{bmatrix} 4 & -3 \\ 1 & -1 \end{bmatrix}$	(d) $\begin{bmatrix} 3 & 1 & 2 \\ -2 & -1 & 3 \\ 7 & 2 & 5 \end{bmatrix} \begin{bmatrix} 1 & 2 & 4 \\ 8 & 3 & 8 \\ 2 & 1 & 0 \end{bmatrix}$

2. Suppose we have two linear transformations $T_1 : \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ and $T_2 : \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ given by these formulas:

$$T_1(x, y, z) = \begin{bmatrix} 7x + 3z \\ 2x + 1y + 8z \end{bmatrix}$$
, and $T_2(u, v) = \begin{bmatrix} 4u + v \\ 2u + 3v \\ -u + 5v \end{bmatrix}$

- (a) Give the formulas for the composite function $T_3 = T_2 \circ T_1$.
- (b) Using these formulas, find the matrix C for T_3 .
- (c) Find the matrix A for T_1 and B for T_2 .
- (d) Compute the matrix product BA showing the details of how you computed the entries. (You should, of course, get matrix C as an answer.)

3. Determine if the linear transformations described by the following matrices are invertible. If not, explain why, and if so, find the matrix of the inverse transformation.

(a)
$$\begin{bmatrix} 4 & 0 \\ 0 & 3 \end{bmatrix}$$
 (b) $\begin{bmatrix} 2 & 0 & 6 \\ 0 & 3 & 1 \end{bmatrix}$ (c) $\begin{bmatrix} 7 & 3 \\ 9 & 4 \end{bmatrix}$ (d) $\begin{bmatrix} 3 & 6 \\ 2 & 4 \end{bmatrix}$
(e) $\begin{bmatrix} 3 & 1 & 5 \\ 6 & 3 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ (f) $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 3 & 1 & 0 & 0 \\ 5 & 6 & 1 & 0 \\ 7 & 10 & 4 & 1 \end{bmatrix}$

4. Suppose that A is the matrix

$$A = \left[\begin{array}{rrrr} 5 & 2 & 4 \\ 2 & 3 & 1 \\ 5 & 6 & 3 \end{array} \right]$$

- (a) Find the inverse of A.
- (b) Explain why, for any values of a, b, and c, the equations

always have a unique solution.

(c) Find this unique solution (in terms of a, b, and c).

5. I don't know if you've seen these before, but there are identities among sin and cos concerning angle addition. That is, if α and θ are two angles, there is a way to write $\sin(\alpha + \theta)$ in terms of sin's and cos's of α and θ , and the same thing for $\cos(\alpha + \theta)$. There are purely geometric proofs of these identies using triangles, but here's a linear algebra proof:

Let T_{α} be the linear transformation from \mathbb{R}^2 to \mathbb{R}^2 which is rotation counterclockwise by α , and T_{θ} the counterclockwise rotation by θ .

- (a) Write down the standard matrices for T_{α} and T_{θ} , explaining your reasoning for T_{α} .
- (b) Explain what the linear transformation $T_{\alpha} \circ T_{\theta}$ does to \mathbb{R}^2 .
- (c) Compute the matrix for $T_{\alpha} \circ T_{\theta}$ by multiplying the matrices for T_{α} and T_{θ} .
- (d) On the other hand, from the description in part (b), you can write down directly the matrix for $T_{\alpha} \circ T_{\theta}$. What is that matrix?
- (e) Since the matrices from parts (c) and (d) are equal (they describe the same linear transformation) what identities among sin and cos must be true?
- (f) Using a similar idea, find formulas for $\sin(3\theta)$ and $\cos(3\theta)$ in terms of $\sin(\theta)$ and $\cos(\theta)$.

NOTE: The due date for this assignment is now **Thursday**, **Oct. 20**, since we didn't cover computing the inverse in class last week.