- 1. Suppose that $T_1: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ and $T_2: \mathbb{R}^m \longrightarrow \mathbb{R}^p$ are linear transformations.
 - (a) If T_1 and T_2 are injective, prove that $T_2 \circ T_1$ is injective.
 - (b) If T_1 and T_2 are surjective, prove that $T_2 \circ T_1$ is surjective.
 - (c) If T_1 and T_2 are invertible, prove that $T_2 \circ T_1$ is invertible too.

2. From the definition, it's not clear that dimension is really a well defined notion. I guess I mean that if V is a subspace of \mathbb{R}^n how do I know that every basis for V has the same number of vectors in it? Why couldn't one basis have 3 vectors and another basis have 5 vectors? If we're going to define the dimension of a subspace V as the number of vectors in any basis for V, we'd better know that the number doesn't depend on the basis.

So:

(a) If V is a subspace of \mathbb{R}^n , and v_1, v_2, \ldots, v_q vectors in V which are linearly independent, and w_1, w_2, \ldots, w_p vectors in V which span V, show that $q \leq p$.

HINT: Let A be the $n \times q$ matrix whose columns are v_1, \ldots, v_q , and B the $n \times p$ matrix whose columns are the vectors w_1, \ldots, w_p . Since the w's span V, and since the v's are in V, explain why this means that there must be a matrix M with A = BM.

If q > p, explain why there has to be a nonzero vector in the kernel of M, and why this means that there has to be a nonzero vector in the kernel of BM. Explain why this would contradict the fact that the v's are linearly independent, and that therefore we must have $q \leq p$.

- (b) If v_1, \ldots, v_q are a basis of V, and if w_1, \ldots, w_p are another basis of V, show that p = q, i.e., show that any two bases of V have the same number of vectors, and hence that the number dim(V) is well defined.
- 3. Suppose that $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is a linear transformation.
 - (a) If \vec{x} is a vector in \mathbb{R}^n , and \vec{v} a vector in the kernel of T, explain why $T(\vec{x}) = T(\vec{x}+\vec{v})$.
 - (b) Conversely, if \vec{x}_1 and \vec{x}_2 are vectors in \mathbb{R}^n , and if $T(\vec{x}_1) = T(\vec{x}_2)$, explain why there is a vector \vec{v} in the kernel of T with $\vec{x}_2 = \vec{x}_1 + \vec{v}$. (HINT: What does T do to $\vec{x}_2 \vec{x}_1$?)

- (c) If \vec{b} is a vector in \mathbb{R}^m , and \vec{x}_1 a vector in \mathbb{R}^n with $T(\vec{x}_1) = \vec{b}$, explain why the solutions to the equation $T(\vec{x}) = \vec{b}$ are all of the form $\vec{x} = \vec{x}_1 + \vec{v}$, with \vec{v} in ker(T).
- 4. Suppose that T is the linear transformation $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ given by

$$T(x,y) = (6x - 3y, 2x - y, 4x - 2y).$$

Notice that the image of T is the line in \mathbb{R}^3 spanned by (3, 1, 2).

- (a) Find and describe the kernel of T.
- (b) Find all the points in \mathbb{R}^2 that map to (3, 1, 2) under T.
- (c) Find all the points in \mathbb{R}^2 that map to (-6, -2, -4) under T.
- (d) Sketch (in \mathbb{R}^2), the answers from parts (a), (b), and (c).
- (e) Explain how your sketch relates to the computations in question (3) above.
- 5. Suppose that A is a 3×2 matrix, and B is a 2×3 matrix.
 - (a) Explain why the 3×3 matrix AB can never be invertible. (HINT: what are the possibilities for the dimension of the kernel of AB?)
 - (b) Find an example where the 2×2 matrix *BA* is invertible.
 - (c) If BA is invertible, what must be the dimension of ker(A), and what must be the dimension of ker(B)? Explain why.