MATH 110 Tutorial 4

Definition. A linear combination of v_1, \ldots, v_m is a sum $c_1v_1 + \ldots + c_mv_m$ for scalars c_1, \ldots, c_m . The vectors v_1, \ldots, v_n are said to be linearly independent if the only time $c_1v_1 + \ldots + c_nv_n = 0$ is when all of the $c_j = 0$.

Definition. The set of all possible linear combinations of the collection of vectors v_1, \ldots, v_n is called the *span* of v_1, \ldots, v_n , which we denote as $\operatorname{span}\{v_1, \ldots, v_n\}$

Definition. A transformation $T : \mathbb{R}^m \to \mathbb{R}^n$ is *linear* if for every $\vec{v}, \vec{w} \in \mathbb{R}^m$ and scalar k, it satisfies:

- 1. $T(\vec{v} + \vec{w}) = T(\vec{v}) + T(\vec{w}),$
- 2. $T(k\vec{v}) = kT(\vec{v}).$

Observation. A linear transformation T preserves zero; T(0) = 0.

Practice Problems.

1. Determine whether \vec{w} is a linear combination of \vec{v}_1, \vec{v}_2 . If so, find the weights a, b so that $\vec{w} = a\vec{v}_1 + b\vec{v}_2$.

(a)
$$\vec{v}_1 = \begin{bmatrix} 4\\2 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 1\\1 \end{bmatrix}, \vec{w} = \begin{bmatrix} 0\\0 \end{bmatrix}.$$

(b) $\vec{v}_1 = \begin{bmatrix} 1\\-1\\2 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 5\\3\\1 \end{bmatrix}, \vec{w} = \begin{bmatrix} 2\\0\\1 \end{bmatrix}.$

2. Let T be the function which sends a cubic polynomial to its second derivative. Show that T is a linear transformation.

3. Suppose $T_1, T_2, T_3, T_4 : \mathbb{R}^2 \to \mathbb{R}^3$ yield the following images.

(x,y)	$ T_1(x,y)$	(x,y)	$T_2(x,y)$
[0,0] [11,0] [0,-6]	$\begin{array}{c c} & - & - & - \\ & & [1, 0, 0] \\ & [1, 2, -1] \\ & [-1, 1, 4] \end{array}$	$\begin{array}{c c} - & - & - & \\ [1,0] & \\ [0,1] & \\ [2,2] & \end{array}$	$\begin{bmatrix} 1, 0, 0 \\ [1, 1, 1] \\ [3, 2, 2] \end{bmatrix}$
(x,y)	$\begin{array}{c c} T_3(x,y) \\ \hline \end{array}$	(x,y)	$T_4(x,y)$
$[1, 2] \\ [-1, 2] \\ [1, 1]$	$\begin{array}{c c} & [3,5,9] \\ [1,0,1] \\ [1,1,1] \end{array}$	$\begin{bmatrix} 5,2 \\ [1,2] \\ [3,-1] \end{bmatrix}$	$[1, 2, 3] \\ [0, 1, 2] \\ [1, 1, 1]$

Which of these four maps *cannot* be linear? Hint: using the two properties of a linear map, we can use linear combinations...

4. Let $f(x,y) := x^2 + y^2$, and g(x,y) := xy. Define $T : \mathbb{R}^2 \to \mathbb{R}^2$ given by

$$T(x,y) = \begin{bmatrix} f(x+2,y+3) - f(x,y) - f(2,3) \\ g(x-1,y+5) - g(x,y) - g(-1,5) \end{bmatrix}.$$

Determine whether T is a linear transformation or not.

5. Challenge. Let $T : \mathbb{R}^m \to \mathbb{R}^n$ be a linear transformation. The collection of points in \mathbb{R}^m whose image under T is $\vec{0}$ is called the *kernel* of T, and is denoted ker(T). Give an example of a linear transformation whose kernel is the plane x + 2y + 3z = 0 in \mathbb{R}^3 . In general, suppose you are given a kernel as a linear equation as above. Find a linear transformation with this kernel.