MATH 110 Tutorial 7

A basis is a linearly independent spanning set. This means: If β_1, \ldots, β_n is a basis for \mathbb{R}^n then the vectors β_1, \ldots, β_n are linearly independent, and every $x \in \mathbb{R}^n$ can be written as $x = c_1\beta_1 + \ldots + c_n\beta_n$ for some real scalars c_1, \ldots, c_n .

Let $T : \mathbb{R}^m \to \mathbb{R}^n$ be a linear transformation represented by the matrix A. A basis for the image of T (or A) is the set of pivot columns of A. **Note:** It does *NOT* work to take the pivot columns from $\operatorname{rref}(A)$.

Let $T : \mathbb{R}^m \to \mathbb{R}^n$ be a linear transformation represented by the matrix A. A basis for the kernel of T (or A) is obtained by solving the system Ax = 0 in terms of the free variables.

A subspace V of \mathbb{R}^n is a subset which:

- 1. Contains the zero vector: $\vec{0} \in V$,
- 2. is closed under scalar multiplication: For $c \in \mathbb{R}$ and $\vec{v} \in V$, we have $c\vec{v} \in V$,
- 3. is closed under vector addition: For $\vec{v_1}, \vec{v_2} \in V$, we have $\vec{v_1} + \vec{v_2} \in V$.

Practice Problems.

1. Find a basis for the kernel and image of the following matrices.

(a)
$$\begin{bmatrix} 1 & 1 & 4 \\ 2 & 2 & 1 \\ 3 & 3 & 0 \end{bmatrix}$$
, (b) $\begin{bmatrix} 1 & 4 \\ -2 & -1 \\ 3 & 4 \end{bmatrix}$, (c) $\begin{bmatrix} 1 & 1 & -2 & 6 \\ 0 & -2 & 4 & 2 \end{bmatrix}$.

- 2. Let A be an $n \times n$ matrix. Compare the kernel of A with the kernel of A^2 .
- 3. Is the union of two subspaces a subspace?
- 4. Say something about the image of AB compared to the image of A.
- 5. Prove that every line through the origin in \mathbb{R}^3 is a subspace of \mathbb{R}^3 .
- 6. Challenge. Suppose A is an $n \times n$ nilpotent matrix, i.e., some positive power of A is zero. Show that the rank of A is at most n/2.

Things you should know...

- Dot products
 - definition, computation
 - Orthogonality
 - Norms
 - Projection
 - $a \cdot b = ||a|| ||b|| \cos \theta$
- RREF
 - definition, computation
 - zero, one, infinitely many solutions to a system of linear equations
 - rank
- Linear Transformations
 - definition
 - injectivity, surjectivity
 - image, kernel
 - composition
 - matrix multiplication
 - inverting a matrix / linear transformation
- Linear combinations
 - linear independence
 - spanning set
 - bases
 - solving equations
- Subspaces
 - definition
 - identifying subspaces, *e.g.* kernel and image