DUE DATE: JAN. 26, 2006

1. Compute the following determinants

(a)	1 1 2	1 3 2	1 3 5		(b)	$\begin{vmatrix} 2\\ 3\\ 0\\ 0 \end{vmatrix}$	$5 \\ 2 \\ 0 \\ 0$	9 1 2 3	$7 \\ 1 \\ 4 \\ 5$		(c)	$ \begin{array}{c} 1 \\ 1 \\ 2 \end{array} $	3 6 3 6	2 4 0 4	4 8 0 12	
(d)	$5 \\ 6 \\ 7 \\ 1$	2 2 4 6	7 6 6 4	$egin{array}{c c} 3 \\ 4 \\ 5 \\ 7 \end{array}$	(e)	${3 \\ 0 \\ 5 \\ 0 \\ 2 }$	2 1 2 6 6	$egin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ 3 \end{array}$	0 0 7 0 0	6 0 1 2 1	(f)	1 1 1 1	1 2 1 1 1	1 2 3 1 2	1 2 3 4 1	1 2 3 4 5

2. Suppose that a, b, c, d, e, and f are numbers such that

a	1	d			a	1	d	
b	1	e	=7	and	b	2	e	= 11.
c	1	f			c	3	f	

Find

3. Just so that we don't forget how to work with finite fields, compute the determinants in (a) and (b) working in \mathbb{F}_5 , and the determinants in (c) and (d) working in \mathbb{F}_7 . (The formula for the determinant is the same – you just do all the arithmetic in \mathbb{F}_5 and \mathbb{F}_7 .)

(a)	$\left \begin{array}{c}2\\1\\0\end{array}\right $	4 1 1	$\begin{array}{c c}1\\3\\4\end{array}$	(b)	$\begin{vmatrix} 4 \\ 0 \\ 2 \\ 3 \end{vmatrix}$	2 3 1 3	$ \begin{array}{c} 1 \\ 1 \\ 0 \\ 1 \end{array} $	$ \begin{array}{c} 3 \\ 2 \\ 1 \\ 2 \end{array} $	
(c)	1 1 6	2 3 3	$egin{array}{c c} 5 & \\ 1 & \\ 1 & \end{array}$	(d)		$5 \\ 5 \\ 1 \\ 0$	${3 \\ 1 \\ 0 \\ 1 }$	2 4 2 1	

4. Going back to \mathbb{R} , let A be the matrix

$$A = \begin{bmatrix} 2 & 2 & 1 & 2 \\ 2 & 1 & 2 & 1 \\ 1 & 2 & 1 & 2 \\ 1 & 1 & 2 & 2 \end{bmatrix}.$$

(a) By changing only a single entry of A to another integer, make the determinant of the new matrix equal to 2.

How did you arrive at your choice?

(b) Is it possible to change only a single entry of A (again to another integer) so that the determinant of the new matrix is 4? Why or Why not?