1. Let A be the matrix

$$A = \left[\begin{array}{rrr} 3 & 2 & z \\ x & 1 & 3 \\ 2 & y & 5 \end{array} \right],$$

where x, y, and z are variables.

- (a) Compute the adjoint matrix of A (this will still involve the variables x, y, and z).
- (b) Compute the product of the adjoint matrix and A.
- (c) Compute det(A).
- (d) Assuming that $det(A) \neq 0$, write down the inverse of A (this will still be a matrix involving the variables).
- (e) To show that this method really gives a "universal formula for the inverse", plug in the values (x, y, z) = (3, -1, 1) into both A and the inverse matrix from part (d), and multiply them to see that it really gives the inverse for A.
- (f) Do the same for (x, y, z) = (1, 1, 1)

2. Suppose that A is an $n \times n$ matrix with integer entries, and that A is invertible. Since A is invertible, we can compute the matrix A^{-1} . The computations seem much cleaner (and friendlier) when A^{-1} also has only integer entries. The purpose of this question is to figure out when that can happen.

PROVE: That (if A is an invertible $n \times n$ matrix, with only integer entries) A^{-1} has integer entries if and only if $det(A) = \pm 1$ (where "= ± 1 " means equals 1 or equals -1). REMINDER: Since this is an "if and only if", don't forget that means that you have two directions to prove.

3. Suppose that x_1, x_2, \ldots, x_n are numbers. The $n \times n$ matrix

$$A = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ x_1 & x_2 & x_3 & \cdots & x_n \\ x_1^2 & x_2^2 & x_3^2 & \cdots & x_n^2 \\ x_1^3 & x_2^3 & x_3^3 & \cdots & x_n^3 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_1^{n-1} & x_2^{n-1} & x_3^{n-1} & \cdots & x_n^{n-1} \end{bmatrix}$$

is called the *Vandermonde matrix*, and is surprisingly useful to know a few basic facts about it. Let's establish one of them now.

If any of the two x_i 's are equal to each other, then of course det(A) = 0 since we will have two repeated columns. What we'd like to show is that if all of the x_i 's are different, then $det(A) \neq 0$, i.e., A is an invertible matrix.

- (a) Explain why showing that $det(A) \neq 0$ is the same as showing that $det(A^t) \neq 0$, where A^t means the transpose of A. [This is a very short answer].
- (b) Explain why showing that $det(A^t) \neq 0$ is the same as showing that A^t has no nonzero vector in the kernel.
- (c) if $\vec{v} = (c_0, c_1, \ldots, c_{n-1})$ is a vector in the kernel of A^t , and \vec{v} is not the zero vector, explain how this would give you a polynomial of degree $\leq n-1$ with more than n-1 roots, which would be a contradiction. [HINT: consider what $A^t\vec{v} = 0$ means. Make sure that you answer carefully, for instance, why is it important that all the x_i 's be different?]

4. For each of the following two matrices, find the values of t for which the matrix is not invertible. For each of those values of t, find a basis for the kernel of the corresponding non-invertible matrix.

(a)
$$\begin{bmatrix} t-12 & 15 \\ -6 & t+7 \end{bmatrix}$$
 (b) $\begin{bmatrix} t-17 & 9 & -2 \\ 2t-35 & 19 & -4 \\ 2t+2 & -(t+1) & t-1 \end{bmatrix}$.

- 5. For the basis $\mathfrak{B} = [(3,5), (1,2)]$ in \mathbb{R}^2 ,
 - (a) Express (4,3), (1,2), and (1,3) in \mathfrak{B} coordinates.
 - (b) Express $(2,0)_{\mathfrak{B}}$, $(1,1)_{\mathfrak{B}}$, and $(-1,4)_{\mathfrak{B}}$ in the standard coordinates.

Just for fun, here is a chart showing the (capital) German Gothic letters. Happy Translating!

A	В	C	D	E	F	G	Η	Ι	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z
A	\mathfrak{B}	C	ହ	૬	F	G	\mathfrak{H}	I	J	Ŕ	\mathfrak{L}	M	N	\mathfrak{O}	Ŗ	\mathfrak{Q}	R	G	T	\mathfrak{U}	V	W	X	Ŋ	3