DUE DATE: MAR. 23, 2006

1. In each of the following cases, either prove that the given subset W is a subspace of V, or show why it is not a subspace of V.

- (a) $V = C^{\infty}(\mathbb{R})$, W is the set of functions $f \in V$ for which $\lim_{x \to \infty} f(x) = 0$.
- (b) $V = C^{\infty}(\mathbb{R})$, W is the set of functions $f \in V$ for which f(4) = 1.
- (c) $V = M_{2\times 2}(\mathbb{R})$, W is the set of matrices whose square is the zero matrix (i.e., those matrices A with A^2 the zero matrix).
- (d) $V = \mathbb{R}^{\infty}$, W is the subset of vectors $(x_1, x_2, x_3, ...)$ for which $x_3 = x_2 + x_1$, $x_4 = x_3 + x_2$, $x_5 = x_4 + x_3$, ..., and in general $x_{n+2} = x_{n+1} + x_n$ for all $n \ge 1$.
- 2. In each of the following cases, either prove that the vectors are linearly independent, or show that they are linearly dependent.
 - (a) The vectors $v_1 = (1, 2)$ and $v_2 = (3, 6)$ in W_2 .
 - (b) The vectors $v_1 = \ln(x^2 + 1)$, $v_2 = \ln(x^4 + 4x^2 + 3)$, and $v_3 = \ln(x^2 + 3)$ in $C^{\infty}(\mathbb{R})$.
 - (c) The vectors $v_1 = e^x$, $v_2 = e^{3x}$, and $v_3 = \cos(x)$ in $C^{\infty}(\mathbb{R})$.
- 3. In each of the following cases, either prove that the given rule is a linear transformation, or show why it isn't.
 - (a) $T: \mathbb{R}^{\infty} \longrightarrow \mathbb{R}^{\infty}$, T is the rule "shift to the right": $T(x_1, x_2, x_3, \ldots) = (0, x_1, x_2, x_3, \ldots)$.
 - (b) $T: M_{2\times 3}(\mathbb{R}) \longrightarrow \mathbb{R}^2$, T sends the matrix M to $M\vec{w}$ where $\vec{w} = (1, 2, 3)$ (the output is a vector in \mathbb{R}^2).
 - (c) $T: W_2 \longrightarrow \mathbb{R}^2$, T(x,y) = (x,y).
 - (d) $T: W_2 \longrightarrow \mathbb{R}^2$, $T(x,y) = (\ln(x), \ln(y))$.
 - (e) $T: C^{\infty}(\mathbb{R}) \longrightarrow \mathbb{R}, T(f) = \int_{1}^{3} f \cdot \sin(x) dx.$

The vector spaces used on the previous page are

- $C^{\infty}(\mathbb{R})$: The vector space of functions from \mathbb{R} to \mathbb{R} with infinitely many derivatives. Addition and scalar multiplication are just addition and scalar multiplication of functions.
 - \mathbb{R}^{∞} : The set of infinite sequences (x_1, x_2, x_3, \ldots) of numbers in \mathbb{R} , where addition and scalar multiplication are coordinate-wise.
- $M_{m\times n}(\mathbb{R})$: The set of $m\times n$ matrices with entries in \mathbb{R} , where addition is addition of matrices and scalar multiplication is multiplying all entries of the matrix by that number.
 - W_2 : The following "weird" vector space: W_2 is the set of all pairs (x, y) with both x > 0 and y > 0 real numbers, with addition defined as multiplication of the coordinates:

$$(x_1, y_1) + (x_2, y_2) = (x_1x_2, y_1y_1)$$

for any (x_1, y_1) , (x_2, y_2) in W_2 , and scalar multiplication defined as exponentiation of the coordinates:

$$c \cdot (x, y) = (x^c, y^c)$$

for any (x, y) in W_2 and c in \mathbb{R} .

REMINDER: The zero vector in W_2 is (1,1).

All of these vector spaces are vector spaces over \mathbb{R} .