
Math 110 (Term 2) Tutorial 10: Constant Coefficient Differential Equations

Material Covered

A constant coefficient linear differential equation is an equation of the form f (n)+an−1f
(n−1)+

· · ·+ a1f
′ + a0f = g, where the ai’s are constants and g is some given function. The highest

derivative of f which appears in the equation is called the degree of the equation. To solve
such an equation, we must the solution set of all f which satisfy the equation. Such an equa-
tion can also be expressed in the form T (f) = g where T (f) is the linear map which sends f
to f (n) + an−1f

(n−1) + · · ·+ a1f
′ + a0f .

To the linear map T we can associate a polynomial (the characteristic polynomial) which
is equal to λn + an−1λ

n−1 + · · ·+ a1λ + a0. We can then factor the characteristic polynomial
as (λ − r1)(λ − r2) · · · (λ − rn) where the rn’s are the roots of the characteristic polynomial.
Then, we can let Ti be the degree one linear map which sends f to f ′ − rif , and then T can
be decomposed as a composition of linear maps: T = T1 ◦ T2 ◦ · · · ◦ Tn−1 ◦ Tn. A composition
of linear maps is the linear map that results from applying one map after the other. For
example, (T1 ◦ T2)(f) = T1(T2(f)). By studying each of the maps in such a composition, we
can discover many things about T .

We can see that a solution to an equation of the form f ′ − rf = g will always be given
by f(x) = erx

∫ x

0
e−rtg(t)dt. This gives us a way to find a solution of Ti(f) = g for each i.

If we let f1 be a solution of T1(f) = g, f2 be a solution of T2(f) = f1, etc. we will get fn

to be a solution of T (f) = g. While this method provides us a way of finding a solution
to any differential equation of this form, it takes significantly longer than the “guess and
check” method. Because Ti(f) = g can always be solved, each Ti is surjective, and thus T is
surjective. The surjectivity of T means that T (f) = g can be solved for every g.

Once we have a single particular solution to the differential equation, we can find the
general solution by adding to the particular solution every element of the kernel of T . We
can calculate the kernel of T by looking at the kernels of each of the Ti’s. We know that the
kernel of Ti(f) = f ′ − rif is {cerix|c ∈ R}, which is one-dimensional. The dimension of the
kernel of a composition of surjective linear maps is the sum of the dimensions of the maps in
the composition. This means that if T has degree n, it decomposes as a composition of n Ti’s
of degree one, and thus the kernel of T will be n-dimensional.

To calculate the kernel of T , we note that xderix is in the kernel of (Ti)
k (Ti composed

with itself k times) for all d ≤ k. If (λ − ri)
k divides the characteristic polynomial, then we

can pick the last k roots of the characteristic polynomial to all be ri, and thus decompose
T as T = T ′ ◦ (Ti)

k. We can see that anything that is in the kernel of (Ti)
k will be in the

kernel of T , so for each distinct root, we can find k functions in the kernel of T , where k is
the multiplicity of the roots. All these functions will be linearly independent, and there will
be n of them (because the sum of the multiplicities of the roots of a polynomial is equal to
its degree), so these functions will form a basis for the kernel of T . This gives us a way to
calculate the kernel of T , and thus to solve the differential equation.
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Practice Problems

1. For each pair of linear maps S and T , calculate S ◦ T and T ◦ S.
a) S : C∞(R) → C∞(R) sends f to f ′′− 2f ′ + 6f , and T : C∞(R) → C∞(R) sends f to
f ′ + 3f .
b) S : C∞(R) → C∞(R) sends f to sin(x)f , and T : C∞(R) → C∞(R) send f to f ′.

c) S : R2 → R2 has matrix

[
1 2
−1 1

]
, and T : R2 → R2 has matrix

[
0 1
−2 3

]
.

d) S : Pn(R) → R sends a polynomial to the sum of its coefficients, T : R → Pn(R)
sends a real number r to the polynomial rxn.

2. Remember that two linear maps S and T are said to commute if S ◦ T = T ◦ S. Which
of the pairs of maps in the previous question commute?

3. For each linear differential operator below, decompose it as a composition of degree one
differential operators:
a) T sends f to f ′′.
b) T sends f to f ′′ − f ′ − 2f .
c) T sends f to f (4) + 4f (3) + 3f ′′ − 4f ′ − 4f .

4. Compute the kernel of each of the following linear operators:
a) T sends f to f ′′ − f ′ − 2f .
b) T sends f to f ′′.
c) T sends f to f (4) + 4f ′′′ + 3f ′′ − 4f ′ − 4f .

5. Find a particular solution to each of the following differential equations:
a) f ′(x)− 5f(x) = 1

x
.

b) f ′′(x)− f ′(x)− 2f(x) =
√

x.
c) f ′′′(x)− 2f ′′(x) + f ′(x) + f(x) = x.

6. Solve the differential equation f ′′′(x)− 2f ′′(x)− 5f ′(x) + 6f(x) = sin x.

7. What are the conditions on g such that the solution set to the differential equation
T (f) = g will be a subspace of C∞(R)? Why do these conditions guarantee that the
solution set will be a subspace? Why are they necessary for it being a subspace?
(HINT: every subspace must contain the zero vector)

8. Consider the linear map T which sends f to f ′′ + f .
a) Decompose T as a composition T1 ◦ T2.
b) Based on T1 and T2 find functions f1 and f2 in the kernel of T .
c) Confirm that sin x and cos x are in the kernel of T .
d) Explain why f1, f2, sin and cos are linearly independent. Does this contradict the
kernel being two-dimensional?
e) Are f1 and f2 actually in C∞(R)? Are T1 and T2 actually linear maps from C∞(R)
to C∞(R)?
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Solutions

1. For each pair of linear maps S and T , calculate S ◦ T and T ◦ S.
a) S ◦ T is the same as T ◦ S; they both send f to f ′′′ + f ′′ + 18f .
b) S ◦ T sends f to sin(x)f ′, and T ◦ S sends f to sin(x)f ′ + cos(x)f .

c) S ◦ T has matrix

[
−4 7
−2 2

]
, and T ◦ S has matrix

[
−1 1
−5 −1

]
.

d) S ◦T sends a real number r to r, T ◦S sends a polynomial P to the polynomial rxn,
where r is the sum of the coefficients of p.

2. Only the first pair of linear maps commute.

3. a) T = T1 ◦ T1, where T1 sends f to f ′.
b) T = T1 ◦ T1, where T1 sends f to f ′ − 2f and T2 sends f to f ′ + f .
c) T = T1 ◦ T2 ◦ T3 ◦ T3, where T1 sends f to f ′ − f , T2 sends f to f ′ + f , and T3 sends
f to f ′ + 2f .

4. a) The kernel has basis {e2x, e−x}.
b) The kernel has basis {1, x}.
c) The kernel has basis {ex, e−x, e−2x, xe−2x}..

5. a) f(x) = e5x
∫ x

0
e−5tdt

t
.

b) f(x) = e2x
∫ x

0
e−3y

∫ y

0
et
√

tdtdy.
c) f(x) = x− 1.

6. The general solution is f(x) = 1
13

sin x + 3
26

cos x + c1e
x + c2e

−2x + c3e
3x.

7. The solution set to the differential equation T (f) = g will be a subspace of C∞(R)?
exactly when g = 0. When g = 0, this will be a subspace because it will be the kernel
of T . If this is a subspace, 0 is in it, so 0 is a solution, and so T (0) = g, which means
g = 0.

8. a) T = T1 ◦ T2 where T1 sends f to f ′ − if and T2 sends f to f ′ + if .
b) f1(x) = eix and f2(x) = e−ix.
c) T (sin x) = − sin x + sin x = 0 and T (cos x) = − cos x + cos x.
d) f1, f2, sin and cos are linearly independent, because sin and cos are linearly indepen-
dent, f1 and f2 are linearly independent, and we can’t make f1 and f2 out of sin and
cos because f1 and f2 have complex values, and sin and cos have real values.
e) f1 and f2 are not actually in C∞(R), because they don’t have only real values?.T1

and T2 are not actually linear maps from C∞(R) to C∞(R), because they send functions
from R to R to functions from R to C.
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