Material Covered

The Laplace expansion method of calculating determinants. For an $n \times n$ matrix, pick one row or column. Then, for each entry in that row or column, remove that entry's row and column from the matrix to get a smaller matrix, take the determinant of that matrix, multiply by the entry in question, and multiply by ± 1 depending upon where that entry is in the matrix. Sum over all entries. In computing Laplace expansions, it is a good idea to start with a row or column which has a lot of 0's in it.

For example, consider the matrix:

$$\begin{vmatrix}
2 & 3 & 1 & 0 & -2 \\
1 & 1 & 0 & 0 & 3 \\
5 & 0 & 0 & 0 & 0 \\
1 & 2 & -3 & 1/5 & 3 \\
0 & 4 & 2 & 0 & 2
\end{vmatrix}$$
Expanding using the 5th row, you get: $5\begin{vmatrix}
3 & 1 & 0 & -2 \\
1 & 0 & 0 & 3 \\
2 & -3 & 1/5 & 3 \\
4 & 2 & 0 & 2
\end{vmatrix}$
+ 0 + 0 + 0 + 0
Then, expanding using the 3rd column, you get: $5(0 + 0 + 1/5\begin{vmatrix}
3 & 1 & -2 \\
1 & 0 & 3 \\
4 & 2 & 0 & 2
\end{vmatrix}$
+ 0 + 0 + 0 + 0
Then, expanding using the 2nd column, you get: $-1\begin{vmatrix}
1 & 3 \\
4 & 2
\end{vmatrix}$
+ 0 - 2 $\begin{vmatrix}
3 & -2 \\
1 & 3
\end{vmatrix}$
+ 0 + 0 + 0
Which yields: $-1(1 \times 2 - 4 \times 3) - 2(3 \times 3 - 1 \times -2) = -12$

Properties of the Determinant:

- $det(A) = det(A^t)$
- det(AB) = det(A)det(B)
- det(A) = 0 if and only if A is not invertible.
- $det(A^{-1}) = 1/det(A)$

We call the number obtained by removing the i^{th} row and the j^{th} column from a matrix A and then computing the determinant the ij-cofactor of A (denoted A_{ij}). The matrix obtained by placing A_{ji} in the ij-entry is called the adjoint of A and is denoted adj(A). If we are given a matrix A, we have a formula for A^{-1} : $A^{-1} = \frac{adj(A)}{det(A)}$. Cramer's Rule allows us to solve a system of linear equations using determinants. If we

Cramer's Rule allows us to solve a system of linear equations using determinants. If we have a linear system Ax = b, for $x = (x_1, x_2, \dots, x_n)$, then $x_i = \frac{det(A_i)}{det(A)}$, where A_i is the matrix obtained by replacing the i^{th} column of A with the vector b.

Practice Problems

1. Compute the following determinants:

$\begin{vmatrix} 3 & 4 & 5 \\ 0 & 1 & -3 \\ 2 & -1 & -2 \end{vmatrix} \begin{vmatrix} 0 & 1 & -2 & 1 \\ 0 & 0 & 3 & -2 \\ 4 & 2 & 2 & 0 \\ -2 & -3 & 1 & 0 \end{vmatrix} \begin{vmatrix} -1 & 1 & 4 \\ 1 & 0 & 3 \\ -2 & 2 & 0 \end{vmatrix} \begin{vmatrix} a - b & 3a & 2 \\ c & d + 3c \\ -f & e \end{vmatrix}$	2a - b $2c$ $-f$	$3a \\ d+3c \\ e$	a-b c -f		$4 \\ 3 \\ 0$	$\begin{array}{c} 1 \\ 0 \\ 2 \end{array}$	$-1 \\ 1 \\ -2$	$ \begin{array}{c c} -2 \\ 0 \\ 0 \end{array} $		$ \begin{array}{c} 0 \\ 2 \\ -3 \end{array} $	$\begin{vmatrix} 0\\ 0\\ 4\\ -2 \end{vmatrix}$	$\begin{array}{c c}5\\-3\\-2\end{array}$	$4 \\ 1 \\ -1$	$\begin{vmatrix} 3\\0\\2 \end{vmatrix}$
--	------------------	-------------------	----------------	--	---------------	--	-----------------	---	--	---	--	--	----------------	---

2. Compute the following determinants:

			12	7	22	2	3	7	22	3	-4	
3	7	22		1	22 C	0 50	0	1	-6	52	6	
0	1	-6		1	-0	$\frac{52}{20}$	0	0	-2	-20	-11	
0	0	-2		0	-2	-20	0	0	0	4	2	
		I	0	0	0	$\begin{array}{c c}3\\52\\-20\\4\end{array}$	0	0	0	0	-1	

Do you notice a pattern? Can you explain why this pattern holds?

3. Compute the following determinants:

1	9	Ο	0	1	ი	19	11	1	-2	-1	5	-2	1	-2	-1	5	-2
	-2	0	0		-2	10		3	1	-7	15	3	3	1	-7	15	3
3	T	0	0	3	1	33	-20		Ο	_2	_1	4	5	Ο	_2	_1	0
0	0	-2	-1	0	0	-2	-1		0	2	1			0	2	1	0
0	0	3	4	0	0	3	4		0	3	4	0	3	0	3	0	0
10	0	0	т		0	0	$\begin{array}{c c}11\\-20\\-1\\4\end{array}$	0	0	1	-2	2	-2	0	0	0	0

What is the pattern here? Why does it hold?

4. Let
$$a, b, c, d$$
 be such that $\begin{vmatrix} a & 17 & -13 & 11 \\ b & 1 & 3 & -2 \\ c & -1 & -2 & -1 \\ d & 0 & 3 & 4 \end{vmatrix} = -3$. Calculate $\begin{vmatrix} a+2 & 17 & -13 & 11 \\ b & 1 & 3 & -2 \\ c & -1 & -2 & -1 \\ d & 0 & 3 & 4 \end{vmatrix}$.

- 5. If det(A) = d, what is the value of det(kA)? Can we interpret this geometrically in terms of the scaling of areas?
- 6. If $det(A) = d \neq 0$, calculate $det(A^{-1}A^t)$, $det((A^t)^{-1})$, and det(adj(A)).
- 7. Suppose A is a matrix with rational entries such that $A^4 = I$. What are the possible values for det(A)? What about if the entries of A are chosen from \mathbb{F}_5 ?
- 8. Suppose we have a system of n linear equations in n unknowns such that the coefficient of x_1 in each equation is equal to the constant term in that equation. What can we say about the solution to such a system of equations?
- 9. Say that A is a 2×3 matrix, and B is a 3×2 matrix. Do we know anything about det(BA)? What about det(AB)?

Solutions

$$1. \begin{vmatrix} 3 & 4 & 5 \\ 0 & 1 & -3 \\ 2 & -1 & -2 \end{vmatrix} = -49, \begin{vmatrix} 0 & 1 & -2 & 1 \\ 0 & 0 & 3 & -2 \\ 4 & 2 & 2 & 0 \\ -2 & -3 & 1 & 0 \end{vmatrix} = 8$$
$$\begin{vmatrix} -1 & 1 & 4 \\ 1 & 0 & 3 \\ -2 & 2 & 0 \end{vmatrix} = 8, \begin{vmatrix} a - b & 3a & 2a - b \\ c & d + 3c & 2c \\ -f & e & -f \end{vmatrix} = adf + bce$$
$$2. \begin{vmatrix} 3 & 7 & 22 \\ 0 & 1 & -6 \\ 0 & 0 & -2 \end{vmatrix} = -6, \begin{vmatrix} 3 & 7 & 22 & 3 \\ 0 & 1 & -6 & 52 \\ 0 & 0 & -2 & -20 \\ 0 & 0 & 0 & 4 \end{vmatrix} = -24, \begin{vmatrix} 3 & 7 & 22 & 3 & -4 \\ 0 & 1 & -6 & 52 & 6 \\ 0 & 0 & -2 & -20 & -11 \\ 0 & 0 & 0 & 4 & 2 \\ 0 & 0 & 0 & 0 & -1 \end{vmatrix} = 24$$

The pattern is that the determinant of an upper triangular matrix is the product of the diagonal entries.

3. Compute the following determinants:

1	-2		0			1 -							
3	1	0	0		25	3	1	33	-	20	= -3	F	
0	0	-2	-1	= -	55,	0	0	-2	-	-1	= -3	0	
0	0	3	4			0	0	3		4			
1	-2	-1	5	-2	·			1 -	-2	-1	5	-2	
3	1	-7	15	3				3	1	-7	15	3	
0				4	= -	-350,		5	0	-2	-1	0	= 24
0	0	3	4	0				3	0	3	0	0	
0	0	1	-2	2			-	-2	0	0	0	0	

The pattern is that if we can decompose a matrix into smaller matrices $\begin{bmatrix} A & B \\ 0 & D \end{bmatrix}$, then the determinant is det(A)det(D).

- 4. The determinant of the new matrix is -3 + 2(13) = 23.
- 5. If A is an $n \times n$ matrix, $det(kA) = k^n d$. Geometrically, this means that if we scale a shape by a factor of k in every direction, its volume increases by k^n .
- 6. $det(A^{-1}A^t) = 1$, $det((A^t)^{-1}) = 1/d$, and $det(adj(A)) = d^{n-1}$.
- 7. If A is a matrix with rational entries, det(A) could be 1 or -1. If the entries of A are chosen from \mathbb{F}_5 , det(A) could be 1, 2, 3, or 4.
- 8. The solution to such a system of linear equations is $x_1 = 1$, $x_2 = 0$, $x_3 = 0$, etc.
- 9. det(BA) must be 0. det(AB) could be any number.