Material Covered

An abstract vector space is a set of "vectors" which can be added together and multiplied by scalars in order to yield new vectors. The rules for addition and scalar multiplication have to satisfy a number of axioms in order for the set to count as a vector space. The axioms guarantee that the set will behave "like" \mathbb{R}^n for some n. Some examples of abstract vector spaces are the $n \times m$ matrices (denoted by $M_{n \times m}(\mathbb{R})$), continuous infinitely differentiable realvalued functions on \mathbb{R} (denoted by $C^{\infty}(\mathbb{R})$, and polynomials of degree up to n with coefficients in \mathbb{R} (denoted by $P_n(\mathbb{R})$).

A subspace of a vector space is a subset of the vector space which is "closed" under addition and multiplication by scalars. This means that, for any two vectors v and w in the subspace, and for any scalar c, v + w and cv are both in the subspace. Any subspace of a vector space is a vector space itself.

For any vector space V, a set of vectors $\{v_1, v_2, \dots, v_n\}$ is said to span V if every vector w in v can be written in the form $w = c_1v_1 + c_2v_2 + \cdots + c_nv_n$ for some scalars c_i . A set of vectors $\{v_1, v_2, \dots, v_n\}$ is said to be linearly independent if the only scalars c_i for which $c_1v_1 + c_2v_2 + \cdots + c_nv_n = 0$ are the scalars $c_1 = c_2 = \cdots = c_n = 0$. Any subset B of a vector space V is said to be a basis of V if it both spans V and is lineally independent.

A linear transformation (linear map) from one vector space V to another W is a function A such that, for any v_1 and v_2 in V, and any scalar c, $A(v_1 + v_2) = A(v_1) + A(v_2)$ and $A(cv_1) = cA(v_1)$. Differentiation is a linear map from $C^{\infty}(\mathbb{R})$ to $C^{\infty}(\mathbb{R})$. Evaluation at a fixed point is a map from $C^{\infty}(\mathbb{R})$ to R. Evaluation at two points is a linear map from $C^{\infty}(\mathbb{R})$ to R^2 . Multiplication by the function $\sin x$ is a linear map from $P_n(\mathbb{R})$ to $C^{\infty}(\mathbb{R})$.

The dimension of a vector space is defined to be the number of vectors in any basis of that vector space. If S is a linearly independent set of vectors in V, then S will never contain more than dim(V) vectors. If S is a set of vectors that spans V, then S will never contain less than dim(V) vectors. \mathbb{R}^n is always n-dimensional; $P^n(\mathbb{R})$ is always (n + 1)-dimensional. Some vector spaces, such as $C^{\infty}(\mathbb{R})$, are infinite-dimensional.

If we have a linear map A from V to W, we define the range of A to be the set of all vectors in W which are equal to Av for some v in V. We define the kernel of A to be the set of all vectors v in V for which Av = 0. range(A) is always a subspace of W, and kernel(A) is always a subspace of V.

We call the dimension of the range of A the rank of A, and we call the dimension of the kernel of A the nullity of A. The rank-nullity theorem says that the rank of A plus the nullity of A is equal to the dimension of V (the domain of A). In the case where $V = \mathbb{R}^n$ and $W = \mathbb{R}^m$, this become the standard rank-nullity theorem for matrices.

Practice Problems

- 1. Which of the following are subspaces of the vector space in question? Why or why not?:
 - a) The set of functions f in $C^{\infty}(\mathbb{R})$ for which $\int_0^1 f(x) dx = 0$.
 - b) The set of polynomials in $P_n(\mathbb{R})$ which are divisible by (x-2).
 - c) The set of invertible matrices in $M_{n \times n}(\mathbb{R})$.
 - d) The set $C^{\infty}(\mathbb{R})$ in the set $C^{0}(\mathbb{R})$ of continuous functions from \mathbb{R} to \mathbb{R} .
 - e) The set of polynomials in $P_n(\mathbb{R})$ which have degree greater than d (for some d < n).
- 2. Which of the following maps are linear? Why or why not?:

a) The map which sends a polynomial in $P_n(\mathbb{R})$ to the sum of the coefficients of that polynomial in \mathbb{R} .

b) The map from $C^{\infty}(\mathbb{R})$ to itself which sends a function f(x) to f(sin(x)).

c) The map from $M_{n \times n}(\mathbb{R})$ to $P_n(\mathbb{R})$ which sends a matrix to its characteristic polynomial.

d) The map from $C^{\infty}(\mathbb{R})$ to \mathbb{R} which sends a function f(x) to $e^{f}(e)$.

e) The map from $C^{\infty}(\mathbb{R})$ to W_1 which sends a function f(x) to $e^f(e)$ (W_1 is the onedimensional "weird" vector space which consists of all real numbers greater than zero and in which addition is multiplication and scalar multiplication is exponentiation).

- 3. Find a basis for each of the following vector spaces:
 - a) The subspace of $M_{n \times n}(\mathbb{R})$ which consists of all matrices with trace equal to 0.
 - b) The three-dimensional "weird" vector space W_3 .
 - c) The subspace of $C^{\infty}(\mathbb{R})$ consisting of all functions f for which f''(x) = 0 for all x.
- 4. Let V be the set of functions in $C^{\infty}(\mathbb{R})$ spanned by $\{1, \sin x, \cos x, \sin^2 x, \cos^2 x, \sin^3 x, \sin^2 x \cos x, \sin x \cos^2 x, \cos^3 x\}$. We wish to calculate the dimension of V.
 - a) Prove that V is a subspace of $C^{\infty}(\mathbb{R})$.
 - b) Find a linear map A from \mathbb{R}^9 to $C^{\infty}(\mathbb{R})$ which has range equal to V.
 - c) What is the kernel of A? What is its dimension?
 - d) What does the rank-nullity theorem say about the dimension of V?
- 5. For any two vector spaces V and W, we can define their direct sum $V \bigoplus W$ to be the vector space of all ordered pairs (v, w) in which v comes from V and w from W. Addition is defined by $(v_1, w_1) + (v_2, w_2) = (v_1 + v_2, w_1 + w_2)$, and scalar multiplication by c(v, w) = (cv, cw). For example, $\mathbb{R}^2 = \mathbb{R} \bigoplus \mathbb{R}$.

a) If $\{v_1, \dots, v_n\}$ form a basis of V and $\{w_1, \dots, w_m\}$ form a basis of W, find a basis of $V \bigoplus W$.

- b) If V has dimension n and W has dimension m, what is the dimension of $V \bigoplus W$?
- c) Find a linear map A from V to $V \bigoplus W$ which has a trivial kernel. What is the range of A?
- d) Find a linear map B from $V \bigoplus W$ onto W. What is the kernel of B?
- e) What can we say about the map BA from V to W?

Solutions

1. a) Is a subspace because of properties of integrals.

- b) Is a subspace because is the range of the linear map which multiplies everything by (x-2).
- c) Not a subspace does not contain 0.
- d) Is a subspace because $C^{\infty}(\mathbb{R})$ and $C^{0}(\mathbb{R})$ are both vector spaces.

e) Not a subspace - the sum of two polynomials of the same degree can have a smaller degree.

- 2. a) Yes, it is linear, because when you add or scalar multiply polynomials, you add or scale their coefficients .
 - b) Yes, it is linear, because $(cf + dg)(\sin x) = c(f(\sin x)) + d(g(\sin x))$.
 - c) No, it is not linear many counterexamples can be found.
 - d) No, it is not linear because sums get sent to products.

e) Yes, it is linear because sums get sent to products in \mathbb{R} , which are sums in W_1 , same for scalar multiples.

- 3. a) One basis contains E_{ij} for all $i \neq j$ together with $E_{ii} E_{(i+1)(i+1)}$ for $1 \leq i \leq n-1$. b) One basis contains $\begin{bmatrix} 2\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \text{ and } \begin{bmatrix} 1\\1\\2 \end{bmatrix}$.
 - c) One basis contains 1 and x.
- 4. a) V is a subspace because it is a set of linear combinations, and the sum or scalar multiple of linear combinations is itself a linear combination.

b) A sends e_1 to 1, e_2 to $\sin x$, e_3 to $\cos x$, e_4 to $\sin^2 x$, e_5 to $\cos^2 x$, e_6 to $\sin^3 x$, e_7 to $\sin^2 x \cos x$, e_8 to $\sin x \cos^2 x$, and e_9 to $\cos^3 x$

c) The kernel of A is spanned by $e_4 + e_5 - e_1$, $e_6 + e_8 - e_2$, and $e_7 + e_9 - e_3$. It has dimension 3.

- d) The dimension of V is 9-3=6.
- 5. a) A basis of $V \bigoplus W$ is $\{(v_1, 0), \dots, (v_n, 0), (0, w_1), \dots, (0, w_m)\}$.
 - b) The dimension of $V \bigoplus W$ is n + m.
 - c) A sends v_i to $(v_i, 0)$. The range of A is spanned by $\{(v_1, 0), \dots, (v_n, 0)\}$.
 - d) B sends $(v_i, 0)$ to 0, and $(0, w_j)$ to w_j . The kernel of B is spanned by $\{(v_1, 0), \dots, (v_n, 0)\}$.
 - e) BA sends everything in V to 0.