DUE DATE: OCT. 21, 2010

1. Let $z_0 \in \mathbb{C}$ be a fixed complex number, and for any real number r > 0 let γ_r be the circle of radius r around z_0 , oriented counterclockwise. Find $\int_{\gamma_r} \frac{1}{z - z_0} dz$.

2. For a point $z = x + iy \in \mathbb{C}$ let γ_1 be the path that goes in a straight line from 0 to z, and let γ_2 be the path that goes from 0 to x, and then to z, as illustrated below.

Let $f(z) = 3|z|^2$.

(a) Find
$$\int_{\gamma_1} f(z) dz$$
.

(b) Find
$$\int_{\gamma_2} f(z) dz$$
.

The answers in (a) and (b) depend on z = x + iy and so define complex functions $F_1(z)$ and $F_2(z)$.

- (c) Is the function F_1 from (a) holomorphic?
- (d) Is the function F_2 from (b) holomorphic?
- 3. Show the following estimates:

(a)
$$\left| \int_{\gamma} \frac{dz}{z^2 - i} \right| \le \frac{3\pi}{4}$$
, where $\gamma = \left\{ z \in \mathbb{C} \mid |z| = 3 \right\}$, oriented counterclockwise.

(b)
$$\left| \int_{\gamma} \text{Log}(z) dz \right| \leq \frac{\pi^2}{4}$$
, where $\gamma = \left\{ z \in \mathbb{C} \mid |z| = 1, \ 0 \leq \text{Arg}(z) \leq \frac{\pi}{2} \right\}$, oriented counterclockwise

(c)
$$\left| \int_{\gamma} \exp(\sin z) \, dz \right| \leq 1$$
, where γ is the straight line segment from $z = 0$ to $z = i$.

4. The definition of the complex integral along a contour was obtained by imitating the real definition via Riemann sums. It would be nice if there were also a simple geometric description of what the complex integral is measuring. The purpose of this problem is to give one possible geometric description of $\int_{\gamma} f(z) dz$, although it is terms of the \mathbb{R}^2 vector field associated to $\overline{f(z)}$ instead of the vector field associated to f(z).

Suppose that $\mathbf{G} = (G_1, G_2) \colon S \longrightarrow \mathbb{R}^2$ is function defined on an open set S in \mathbb{R}^2 , and that $\gamma \colon (a, b) \longrightarrow \mathbb{R}^2$ is a parametrized curve given by $\gamma(t) = (x(t), y(t))$ whose image lies in S. Recall that the flow of \mathbf{G} along γ (the usual line integral) is given by

$$\int_{\gamma} \mathbf{G} \cdot ds = \int_{a}^{b} G_{1}(\gamma(t))x'(t) + G_{2}(\gamma(t))y'(t) dt$$

and that the flow of G through γ , from right to left, is given by the integral

$$\int_a^b G_2(\gamma(t))x'(t) - G_1(\gamma(t))y'(t) dt.$$

(The reason for the choice from right to left is that if γ is a closed curve, oriented counterclockwise, then the flow through γ is the same as the flow through the region enclosed by γ).

Now suppose that $f(z): S \longrightarrow \mathbb{C}$ is a function defined on an open set S, and γ is a curve in S. Let G be the function $S \longrightarrow \mathbb{R}^2$ associated to $\overline{f(z)}$ (by taking real and imaginary parts as usual).

Show that

$$\operatorname{Re}\left(\int_{\gamma} f(z) dz\right) = \operatorname{flow of } \mathbf{G} \text{ along } \gamma$$

and

$$\operatorname{Im}\left(\int_{\gamma} f(z) dz\right) = -(\text{flow of } \mathbf{G} \text{ through } \gamma).$$

NOTE: Despite the long discussion needed to set up this problem, the solution is quite short, so don't lose hope.