DUE DATE: NOV. 25, 2010

- 1.
 - (a) Suppose that $p(z) = (z \alpha_1)(z \alpha_2) \cdots (z \alpha_n)$ is a polynomial of degree *n* with distinct roots $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$. Let $f(z) = \frac{1}{p(z)}$. Find a formula for $\operatorname{Res}(f; \alpha_k)$ (where $k \in \{1, \ldots, n\}$).
 - (b) Suppose that p(z) is a polynomial of degree n, and let $\alpha_1, \ldots, \alpha_m$ be the roots of p (m might not equal n since some of the roots may be repeated). Let $f(z) = \frac{1}{p(z)}$. Explain why there is real number R so that

$$\int_{|z|=R} f(z) \, dz = 2\pi i \sum_{k=1}^m \operatorname{Res}(f; \alpha_k).$$

- (c) If $n \ge 2$, explain why $\sum_{k=1}^{m} \text{Res}(f; \alpha_k) = 0$. (A previous homework assignment may be helpful here). Is this still true if n = 1?
- (d) Suppose again that p(z) has distinct roots, and that $n \ge 2$. What formula results by combining the answers to (a) and (c)?

2. Suppose that f(z) has a pole of order k at z_0 . The purpose of this question is to understand short-cut (5) for computing the residue at z_0 .

- (a) What does the Laurent series for f(z) look like around z_0 ?
- (b) What does the Laurent series for $(z z_0)^k f(z)$ look like around z_0 ?
- (c) Let $\varphi(z)$ be the function defined by the series in (b). What is the series for $\varphi^{(k-1)}$, the (k-1)-st derivative of φ ?
- (d) What is the relation between the constant term for the series in (c) and $\operatorname{Res}(f; z_0)$?
- (e) In short-cut (5), why do we take the limit as $z \to z_0$, instead of just "plugging in $z = z_0$ "?

3. For each of the following functions, find the singular points and compute the residues at those points. (NOTE: the result of 1(c) should provide a check for your answers).

(a)
$$\frac{1}{z^3(z+4)}$$
 (b) $\frac{1}{z^2+2z+1}$ (c) $\frac{1}{z^2-3}$

4. Suppose that f_1 and f_2 have simple poles at z_0 . By writing out the Laurent expansions, show that f_1f_2 has a pole of order 2 at z_0 , and find a formula for $\operatorname{Res}(f_1f_2; z_0)$ (in terms of the coefficients of the Laurent expansions of f_1 and f_2).