MATH 110 Tutorial 3

• A transformation $T : \mathbb{R}^m \to \mathbb{R}^n$ is *linear* if for every $\vec{v}, \vec{w} \in \mathbb{R}^m$ and scalar k, it satisfies:

1.
$$T(\vec{v} + \vec{w}) = T(\vec{v} + T(\vec{w}))$$
, and

- 2. $T(k\vec{v}) = kT(\vec{v}).$
- A linear transformation $T : \mathbb{R}^m \to \mathbb{R}^n$ can be expressed by the map $T(\vec{x}) = A\vec{x}$ for some $n \times m$ matrix A.
- In \mathbb{R}^2 , rotations and reflections are examples of linear transformations from the space to itself. The matrix representing a **counter-clockwise** rotation of θ is given by $\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$.
- The *inverse* of a matrix A (usually denoted A^{-1}) gives the reverse map of A so that applying A and then A^{-1} results in the identity. The inverse of A does not always exist.

1. Suppose $T_1, T_2, T_3, T_4 : \mathbb{R}^2 \to \mathbb{R}^3$ yield the following images.

(x,y)	$T_1(x,y)$	(x,y)	$T_2(x,y)$
[0,0] [11,0] [0,-6]	$\begin{array}{c c} & - & - & - \\ & & [1, 0, 0] \\ & [1, 2, -1] \\ & [-1, 1, 4] \end{array}$	$\begin{array}{c c} - & - & - \\ [1,0] & \\ [0,1] & \\ [2,2] & \end{array}$	$\begin{array}{c} - & - & - \\ [1, 0, 0] \\ [1, 1, 1] \\ [3, 2, 2] \end{array}$
(x,y)	$\begin{array}{c c} & T_3(x,y) \\ &$	$(x,y) \mid $ $ \mid $	$T_4(x,y)$
$[1,2] \\ [-1,2] \\ [1,1]$	$\begin{array}{ c c c } & [3,5,9] & , \\ & [1,0,1] \\ & [1,1,1] \end{array}$	$\begin{array}{c c} [5,2] & \\ [1,2] & \\ [3,-1] & \end{array}$	$egin{array}{c} [1,2,3] & . \ [0,1,2] \ [1,1,1] \end{array}$

Is it possible that these maps are linear? If so, give the matrices that represent the linear transformations.

- 2. Let $T : \mathbb{R}^4 \to \mathbb{R}^2$ be the function which sends a polynomial (of degree 3) to its second derivative. Show that T is a linear transformation.
- 3. Let $f(x, y) := x^2 + y^2$, and g(x, y) := xy. Define $T : \mathbb{R}^2 \to \mathbb{R}^2$ given by $T(x, y) = \begin{bmatrix} f(x+2, y+3) - f(x, y) - f(2, 3) \\ g(x-1, y+5) - g(x, y) - g(-1, 5) \end{bmatrix}.$

Determine whether T is a linear transformation or not.

- 4. In \mathbb{R}^2 draw the points with integer coordinates $-2 \le x, y \le 2$. There are 25 of them. Label these points a, b, \ldots . In another copy of \mathbb{R}^2 , determine the image of the previous set of dots under the linear transformation induced by the matrix $\begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$. Describe in words the affect of this linear map.
- 5. (Challenge). Let $T : \mathbb{R}^m \to \mathbb{R}^n$ be a linear transformation. The collection of points in \mathbb{R}^m whose image under T is $\vec{0}$ is called the *kernel* of T, and is denoted $\ker(T)$. Give an example of a linear transformation whose kernel is the plane x+2y+3z=0in \mathbb{R}^3 . In general, suppose you are given a kernel as a linear equation as above. Find a linear transformation with this kernel when it is possible, and determine when, if ever, it is impossible.