MATH 110 Tutorial 4

1. Compute the following matrix products.
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2. Calculate the inverse of each of the following matrices. Multiply the matrix with
its inverse to verify your calculation.
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. (Challenge). Deciding whether something has an inverse is a pivotal question in
algebra. Determine a simple test for whether a 2 x 2 matrix is invertible; hope-
fully you will obtain what is called the determinant of the matrix. Suppose you
are given a 2 x 2 matrix with integer coefficients. Under what condition(s) will
the inverse matrix also have integer coefficients?
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if ad —bc # 0. Let A := [ } with a, b, ¢, d integers.
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Claim. For the inverse of the matrix A to have integer coefficients it is sufficient
and necessary that ad — bc = £1.

Proof. The sufficiency is clear from the calculation of the inverse of A above. We
will verify the necessity. Suppose that ad — be divides a,b, ¢,d. Then (ad — bc)?
divides ad and be, and hence (ad — be)? divides ad — be. This implies that ad — be
divides 1, and hence ad — bc = +£1. ]

Several people were able to say in the tutorials that if ad — bc = £1 then A™!
has integer entries, but no one was able to prove the converse. I hope my proof is
clear.



