DUE DATE: OCT. 5, 2004

1.

- (a) Write $\vec{b}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\vec{b}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, and $\vec{b}_3 = \begin{bmatrix} 11 \\ 2 \end{bmatrix}$ as linear combinations of $\begin{bmatrix} 4 \\ 3 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$.
- (b) Suppose that T is a linear transformation from \mathbb{R}^2 to \mathbb{R}^3 , and that

$$T\left(\begin{bmatrix} 4\\3 \end{bmatrix}\right) = \begin{bmatrix} 2\\1\\5 \end{bmatrix}$$
, and $T\left(\begin{bmatrix} 1\\2 \end{bmatrix}\right) = \begin{bmatrix} 3\\-1\\2 \end{bmatrix}$.

Find

$$T\left(\left[\begin{array}{c}1\\0\end{array}\right]\right),\ T\left(\left[\begin{array}{c}0\\1\end{array}\right]\right),\ \mathrm{and}\ T\left(\left[\begin{array}{c}11\\2\end{array}\right]\right),$$

and explain how you know that T has to do this.

- (c) Find the matrix A representing the linear transformation T.
- (d) Compute the vectors $A\vec{b}_1$, $A\vec{b}_2$, and $A\vec{b}_3$.
- 2. The cross product of two vectors (a_1, a_2, a_3) and (b_1, b_2, b_3) in \mathbb{R}^3 is defined by

$$\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \times \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{bmatrix}.$$

Consider an arbitary vector $\vec{v} = (v_1, v_2, v_3)$ in \mathbb{R}^3 . Is the transformation $T(\vec{x}) = \vec{v} \times \vec{x}$ linear? If so, compute its matrix A in terms of the components of \vec{v} .

- 3. I'd like to consider some linear transformations from \mathbb{R}^3 to \mathbb{R}^3 .
 - (a) Write down the matrix for the linear transformation T_1 which rotates by $\pi/4$ clockwise around the z-axis. (Clockwise means that, if we're at a point on the z-axis where the z values are positive, looking down at the xy-plane, the vectors in the xy-plane are rotated clockwise).

- (b) Write down the matrix for the linear transformation T_2 which rotates by $\pi/2$ counterclockwise around the x-axis (again, this means that looking at the yz-plane from a point on the x-axis where the x values are positive, the vectors in the yz-plane are rotated counterclockwise).
- (c) Write down the matrix for the linear transformation T_3 which rotates by $\pi/4$ clockwise around the y-axis. (Similar interpretation as above.)
- (d) If I start with vector $\vec{e}_1 = (1,0,0)$, and apply transformation T_1 , then T_2 to the answer, and then finally apply T_3 , what vector in \mathbb{R}^3 will I end up with? Compute what will happen if I also do this to the vectors $\vec{e}_2 = (0,1,0)$ and $\vec{e}_3 = (0,0,1)$.
- 4. Given a line L in \mathbb{R}^2 , projection onto L is the function $\mathbb{R}^2 \longrightarrow \mathbb{R}^2$ which sends every point in \mathbb{R}^2 to the nearest point on L, as shown in the diagram at right.

For any m, let $T_m : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be the projection onto the line with slope m through the origin. This turns out to be a linear map, something you can assume when doing the question.

- (a) Find the matrix for T_m , and explain your steps.
- (b) What is the rank of this matrix?
- (c) Let's define a function $T'_m: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ by

$$T'_m(\vec{v}) = \vec{v} - T_m(\vec{v})$$

for any $\vec{v} \in \mathbb{R}^2$.

Show that this is also a linear function from \mathbb{R}^2 to \mathbb{R}^2 .

- (d) Explain geometrically what T_m' does.
- (e) Find the matrix for T'_m . (Do this in the usual way, by seeing what happens to $\vec{e_1}$ and $\vec{e_2}$.)
- (f) The answers for (d) and (a) give another way to compute T'_m ; use this to check your computations in (e).
- (g) As $m \to \infty$, what happens to the line of slope m? What happens to the matrix associated to T_m ? Does this make sense?