
Math 110 Answers for Homework 11

1. Let a = (a0, a1, a2, a3, . . .) = (3, 6, 14, 26, 98, . . .) be the sequence defined in the
problem. Let V be the subset of the infinite sequences (x0, x1, x2, x3, x4, x5, . . .) such that
the x’s satisfy the same recursion relations as the a’s, i.e., such that x3 = 6x2−11x1+6x0,
that x4 = 6x3 − 11x2 + 6x1, and that in general

xn+3 = 6xn+2 − 11xn+1 + 6xn for n ≥ 0.

The set V is actually a subspace of the vector space of infinite sequences.

That is, suppose that
v = (v0, v1, v2, v3, v4, v5, . . .),

and
w = (w0, w1, w2, w3, w4, w5, . . .),

are two sequences in V (so they satisfy all the relations above). Then

v + w = (v0 + w0, v1 + w1, v2 + w2, v3 + w3, v4 + w4, . . .)

is also in V . To see this, let zi be the i-th coordinate of v + w, i.e., so that zi = vi + wi

for all i ≥ 0. To check if the sum is in V we need to see that the z’s satisfy all the
relations. But for any n ≥ 0,

zn+3 = vn+3 + wn+3 [by definition of the z’s]
= (6vn+2 − 11vn+1 + 6vn) + (6wn+2 − 11wn+1 + 6wn) [since v and w are in V ]
= 6(vn+2 + wn+2) − 11(vn+1 + wn+1) + 6(vn + wn) [rearranging terms]
= 6zn+2 − 11zn+1 + 6zn [using the def. of z’s again]

So the sequence of z’s is also in V . Similarly, if c is any number, then

cv = (cv0, cv1, cv2, cv3, cv4, . . .)

is also in V . The argument is even easier: writing zi for the i-th term of cv (so that this
time zi = cvi), we can see that

zn+3 = cvn+3 [by definition of the z’s]
= c(6vn+2 − 11vn+1 + 6vn) [since v is in V ]
= 6(cvn+2) − 11(cvn+1) + 6(cvn) [Rearranging terms.]
= 6zn+2 − 11zn+1 + 6zn [using the def. of z’s again]

So V is also closed under multiplication by scalars. Therefore V is a subspace of the
space of all infinite sequences.
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What is the dimension of V ? The recursion equation gives a good clue: if the first three
terms of any sequence in V are zero, then the recursion equation says that all the rest
are zero too, i.e., the only sequence in V with the first three terms equal to zero is the
zero vector.

That means that if we take the three sequences

e1 = (1, 0, 0, 6, 36, 150, 540, 1806, . . .)

e2 = (0, 1, 0,−11,−60,−239,−840,−2771, . . .)

e2 = (0, 0, 1, 6, 25, 90, 301, 966, . . .)

constructed by starting off with (1, 0, 0, . . .), (0, 1, 0, . . .), and (0, 0, 1, . . .) and using the
rules to determine the rest of the sequence, that these three must span V . Given any
other sequence in V , say v = (a, b, c, d, e, f, . . .), we see that ae1 + be2 + ce3 has first
entries (a, b, c, . . .), and hence v − ae1 − be2 − ce3 is a sequence in V whose first three
entries are zero, and so must be the zero vector, i.e., v = ae1 + be2 + ce3.

This shows that e1, e2, and e3 span V . Since they are also linearly independent, they
form a basis for V , and so V is three dimensional.

The sequence a that we’re looking at is the linear combination a = 3e1 + 6e2 + 14e3,
but this doesn’t really help us compute a general formula for the n-th entry of the a

sequence, since we don’t have a good way of computing the n-the entry of the basis
vectors e1, e2, and e3.

Instead, we look for a different basis, one better suited to finding the n-th term.

Let’s look for sequences in V of the form

(1, α, α2, α3, α4, α5, . . . . . .),

the n-the term is easy to compute – it’s xn = αn.

When is such a sequence in V ? It has to satisfy all the relations, so for instance we
need x3 = 6x2 − 11x1 + 6x0 or α3 = 6α2 − 11α + 6, and that x4 = 6x3 − 11x2 + 6x1 or
α4 = 6α3 − 11α2 + 6α, or in general αn+3 = 6αn+2 − 11αn+1 + 6αn.

But all of these equations are implied by the first one: α3 = 6α2 − 11α + 6, since
multiplying this by αn gives the general relation. So, the condition really becomes, α is
a root of x3 = 6x2 − 11x + 6 or x3 − 6x2 + 11x − 6.

Factoring, we get x3 − 6x2 + 11x − 6 = (x − 1)(x − 2)(x − 3) so there are three such
possible α’s: α1 = 1, α2 = 2, and α3 = 3.
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Letting

v1 = (1, 1, 1, 1, 1, 1, 1, 1, . . .)

v2 = (1, 2, 22, 23, 24, 25, 26, 27, . . .)

v2 = (1, 3, 32, 33, 34, 35, 36, 37, . . .)

we try and write a in terms of v1, v2, and v3, i.e., we look for coefficients c1, c2 and c3

with a = c1v1 + c2v2 + c3v3. Looking at the first three entries of a, this leads to the
equations

c1 + c2 + c3 = 3

c1 + 2c2 + 3c3 = 6

c1 + 4c2 + 9c3 = 14,

which has solutions c1 = 1, c2 = 1, and c3 = 1. This gives a = v1 + v2 + v3, or (by
looking at the n-th entries of the v’s) that an = 1n + 2n + 3n.

2. Polynomial interpolation.

(a) The vector space P5 of polynomials of degree ≤ 5 is six dimensional. One basis is
1, x, x2, x3, x4, and x5.

(b) We showed in class that given the vector space V of all possible functions (on
R), the map V −→ R given by sending f to f(xi), i.e., by plugging an xi is a
linear map. (This actually followed from the definition of sum of functions, if you
remember).

This means that for any numbers x1, x2, . . . , x6 the map from the vector space
V to R

6 given by f 7→ (f(x1), f(x2), f(x3), f(x4), f(x5), f(x6)) is also a linear
map, since checking linearity amounts to checking what happens in each of the
coordinates separately, and the fact that the map is linear in each coordinate
separately is exactly the fact mentioned above.

Since this map is linear on the space V of all functions from R to R, it is also
linear when restricted to the subspace P5 of polynomials of degree ≤ 5.

(c) Saying that T (p) = (y1, y2, . . . , y6) is the same as saying that p(x1) = y1, p(x2) =
y2, . . . , p(x6) = y6, in other words, that p is one of the polynomials we’re looking
for. Since we want p to be unique we need ker(T ) = 0. Since we want to be
able to find a p for any choice of y1, . . . , y6, we need T to be surjective, i.e., that
im(T ) = R

6.
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(d) Since dim(P5) = 6, the rank-nullity theorem says that dim(ker(T ))+dim(im(T )) =
6. So, if ker(T ) = 0, this means that dim(ker(T )) = 0 and the rank-nullity theorem
then implies that dim(im(T )) = 6 or that T is surjective.

(e) If p is in ker(T ) then T (p) = (0, 0, 0, . . . , 0) (by definition of the kernel) but this
means (by the definition of T ) that p(x1) = 0, p(x2) = 0, . . . , p(x6) = 0.

If p(xi) = 0, this means that (x − xi) is a factor of p. Since a nonzero polynomial
of degree ≤ 5 can’t have more than 5 factors, this means that the only polynomial
in the kernel of T is the zero polynomial, i.e., ker(T ) = 0, and so (reversing the
chain of implications above) there is a unique p with p(x1) = y1, . . . , p(x6) = y6.

3. Letting V be the set of linear transformations from V1 to V2, we’re given two proposed
operations on V , and we want to see if this makes V into a vector space. The issue
is whether or not the result of the operations are still elements of V , i.e., still linear
transformations from V1 to V2.

From the descriptions, it’s pretty clear that the T1 + T2 and cT are still maps from V1

to V2, the thing we really need to check is that they’re still linear transformations.

(a) For any f and g in V1, then

(T1 + T2)(f + g) = T1(f + g) + T2(f + g) [by the def. of T1 + T2]
= T1(f) + T1(g) + T2(f) + T2(g) [since T1 and T2 are linear]
= (T1(f) + T2(f)) + (T2(f) + T2(g)) [rearranging terms]
= (T1 + T2)(f) + (T1 + T2)(g) [by def. of T1 + T2 again]

On the other hand, for any f in V1 and any scalar c,

(T1 + T2)(cf) = T1(cf) + T2(cf) [by the def. of T1 + T2]
= cT1(f) + cT2(f) [since T1 and T2 are linear]
= c(T1(f) + T2(f)) [rearranging terms]
= c((T1 + T2)(f)) [by def. of T1 + T2 again]

so T1 + T2 is a linear transformation from V1 to V2.

(b) For any f and g in V1,

(cT )(f + g) = c(T (f + g)) [by the def. of cT ]
= c(T (f) + T (g)) [since T is linear]
= c(T (f)) + c(T (g)) [rearranging terms]
= (cT )(f) + (cT )(g) [by def. of cT again.]
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Similarly, for any f in V1, and any scalar c′ (to differentiate it from c),

(cT )(c′f) = c(T (c′f)) [by the def. of cT ]
= c(c′T (f)) [since T is linear]
= cc′(T (f)) [rearranging terms]
= c′((cT )(f)) [by def. of cT again.]

So cT is a linear transformation from V1 to V2.

(c) Once we’ve chosen a basis for R
2 and R

3, each linear map can be represented by
a matrix, and the operations above are just addition and scalar multiplication of
matrices. So the vector space of linear maps from R

3 to R
2 is the same as the

vector space of 2 × 3 matrices, which is 6 dimensional.

4.

(a) The most elegant solution is probably the following: the vector space of n × n

matrices is n2 dimensional. The matrices An
2

, An
2
−1, An

2
−2, . . .A2, A, In are

n2 + 1 elements of this n2 dimensional vector space, so they must be linearly
dependent. I.e., there must exist cn2, cn2

−1, cn2
−2, . . . , c2, c1, c0, not all zero, with

cn2An
2

+ cn2
−1A

n
2
−1 + · · · + c2A

2 + c1A + c0In = 0.

Letting p(x) be the polynomial

p(x) = cn2xn
2

+ cn2
−1x

n
2
−1 + · · ·+ c2x

2 + c1x + c0

defined by the same coefficients ci solves the problem.

(b) p(x) = x2 − 7x + 10 works, since

[

3 2
1 4

]2

−7

[

3 2
1 4

]

+10

[

1 0
0 1

]

=

[

11 14
7 18

]

−

[

21 14
7 28

]

+

[

10 0
0 10

]

=

[

0 0
0 0

]

.
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