1. For the basis $\beta = (3,5), (1,2)$ in \mathbb{R}^2 , the "from β coordinates to usual coordinates" matrix is $M = \begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix}$, while the "from standard to β " matrix is its inverse $M^{-1} = \begin{bmatrix} 2 & -1 \\ -5 & 3 \end{bmatrix}$.

(a) So, the vector (4,3) in usual coordinates is the same as $(5,1)_{\beta}$ in β coordinates since

$$\begin{bmatrix} 2 & -1 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} 4 \\ 3 \end{bmatrix} = \begin{bmatrix} 5 \\ 1 \end{bmatrix}.$$

Similarly, since

$$\begin{bmatrix} 2 & -1 \\ -5 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \text{ and}$$
$$\begin{bmatrix} 2 & -1 \\ -5 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} = \begin{bmatrix} -1 \\ 4 \end{bmatrix}.$$

we have $(1,2) = (0,1)_{\beta}$ and $(1,3) = (-1,4)_{\beta}$. We could have seen the second formula without any calculation. Since (1,2) is the second basis vector in the basis β , it's β -coordinate is necessarily $(0,1)_{\beta}$.

(b) Going the other way is even easier:

$$\begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 6 \\ 10 \end{bmatrix}$$
$$\begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 8 \\ 3 \end{bmatrix}$$
$$\begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} -1 \\ 4 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

So $(2,0)_{\beta} = (6,10)$, $(1,1)_{\beta} = (8,3)$, and $(-1,4)_{\beta} = (1,3)$. We also found the last equality in part (a), just the other way around.

2. If $\beta = (1, 1, 1)$, (2, 0, 1), and (3, 2, 1) is a new basis in \mathbb{R}^3 , the matrix changing from β coordinates to usual coordinates is

$$N = \left[\begin{array}{rrrr} 1 & 2 & 3 \\ 1 & 0 & 2 \\ 1 & 1 & 1 \end{array} \right]$$

If $\alpha = (3,5)$, (1,2) is a new basis in \mathbb{R}^2 then the matrix changing from the usual coordinates to α coordinates is

$$M^{-1} = \begin{bmatrix} 3 & 1\\ 5 & 2 \end{bmatrix}^{-1} = \begin{bmatrix} 2 & -1\\ -5 & 3 \end{bmatrix}$$

as computed in the previous question.

The matrix for T in the new coordinates is then

$$M^{-1}AN = \begin{bmatrix} 2 & -1 \\ -5 & 3 \end{bmatrix} \begin{bmatrix} 2 & 1 & 5 \\ 1 & 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 1 & 0 & 2 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 11 & 13 & 18 \\ -25 & -30 & -41 \end{bmatrix}.$$

3.

(a) In the new basis $v_1 = (1,0)_\beta$ and $v_2 = (0,1)_\beta$. We're looking for the matrix that does $T((1,0)_\beta) = (1,0)_\beta$ and $T((0,1)_\beta) = (0,0)_\beta$, and this is given by

$$B = \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right]_{\beta}$$

(b) The matrix changing from β coordinates to standard coordinates is $N = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$, its inverse $N^{-1} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{bmatrix}$ changes from standard coordinates to β coordinates.

The matrix for T in standard coordinates is then

$$NBN^{-1} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

This is the same as the matrix for m = 1 in problem 4, homework 3, since they're the same linear transformation: they send the vector (1, 1) (a vector on the line of slope 1) to itself, and send the vector (1, -1) (a vector perpendicular to the line) to the zero vector.

4. Letting V be the vector space, and $\beta = \sin(x), \cos(x)$ the basis, we have that $\sin(x) = (1,0)_{\beta}$ and $\cos(x) = (0,1)_{\beta}$ in β coordinates.

Since the derivative map T operates on $\sin(x)$ and $\cos(x)$ by $T(\sin(x)) = \cos(x)$ and $T(\cos(x)) = -\sin(x)$, this is the same as

$$T((1,0)_{\beta}) = (0,1)_{\beta}$$

and

$$T((0,1)_{\beta}) = (-1,0)_{\beta},$$

and so the matrix for T in this basis is given by $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$.