
Math 110 Answers for Homework 4

1.

(a)





1 −2
3 1
4 −7





[

1 −3 −3
2 1 2

]

=





−3 −5 −7
5 −8 −7

−10 −19 −26





(b)

[

1 −3 −3
2 1 2

] 



1 −2
3 1
4 −7





=

[

−20 16
13 −17

]

(c)

[

−1 3
4 6

] [

5 −2
1 −1

]

=

[

−2 −1
26 −14

]

(d)





1 2 3
−2 −3 1

4 5 2









4 2 1
3 3 3
0 1 2



 =





10 11 13
−17 −12 −9

31 25 23





(e)









1 0 0 1
0 1 1 0
0 0 1 0
0 0 0 1

















1 2 2 3
3 4 4 5
0 0 1 2
0 0 3 4









=









1 2 5 7
3 4 5 7
0 0 1 2
0 0 3 4









2. It might be a bit easier to use the variables u and v for the transformation T2, in
order to try and make the notation a bit clearer. We have

T1(x, y, z) =

[

3x + 7z
x + 2y + 8z

]

, and T2(u, v) =





u + 4v
2u + 3v
−u + 2v



 ,

and so

(a)

T3(x, y, z) = T2(T1(x, y, z))

= T2(3x + 7z, x + 2y + 8z) =





(3x + 7z) + 4(x + 2y + 8z)
2(3x + 7z) + 3(x + 2y + 8z)
−(3x + 7z) + 2(x + 2y + 8z)



 ,

=





7x + 8y + 39z
9x + 6y + 38z
−x + 4y + 9z



 .
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(b) Plugging in the vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1) into the formulas, we see
that

T3(1, 0, 0) =





7
9

−1



 , T3(0, 1, 0) =





8
6
4



 , and T3(0, 0, 1) =





39
38
9



 .

and so the matrix for T3 is C =





7 8 39
9 6 38

−1 4 9



.

(c) Similarly, using the formulas for T1 we get

T1(1, 0, 0) =

[

3
1

]

, T1(0, 1, 0) =

[

0
2

]

, and T1(0, 0, 1) =

[

7
8

]

,

so the matrix for T1 is A =

[

3 0 7
1 2 8

]

, while for T2 we have

T2(1, 0) =





1
2

−1



 and T2(0, 1) =





4
3
2





giving the matrix B =





1 4
2 3

−1 2



.

(d) Multiplying, we have




1 4
2 3

−1 2





[

3 0 7
1 2 8

]

=





7 8 39
9 6 38

−1 4 9





as expected. (You should show the details of this multiplication – I’m skipping
them).

3. In order for a matrix to be invertible, it should be square (say n × n) and have rank
n, i.e., if we put it in RREF, we should get the n × n identity matrix I

n
. We saw that

this is exactly the condition so that the linear transformation described by the matrix
was invertible as a function.

(a) This matrix is pretty clearly invertible: we could either row reduce it, or even,
thinking geometrically, see that this transformation stretches the x-axes by a factor
of 2 and the y-axis by a factor of 3. Its inverse is, from either point of view, the
matrix

[

1

2
0

0 1

3

]

.
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(b) This matrix can not be invertible; it’s not even square.

(c) This matrix is invertible. Row reducing:

[

5 7
... 1 0

3 4
... 0 1

]

 

[

1 0
... 4 −7

0 1
... −3 5

]

we see that the inverse is

[

4 −7
−3 5

]

(d) This is matrix is not invertible, it has rank 1. If we row reduce, we get

[

2 1
10 5

]

 

[

2 1
0 0

]

(e) This matrix isn’t invertible. Its RREF is





1 0 17

2

0 1 −11
0 0 0



 .

and so it has rank 2. In fact, there was no need to even compute the RREF, from
the form of the original matrix we could see that the RREF would continue to
have a bottom row which is all zero, and so the matrix can’t have rank 3.

(f) This matrix is invertible. Row reducing, we get















1 0 0 0
... 1 0 0 0

3 1 0 0
... 0 1 0 0

5 6 1 0
... 0 0 1 0

7 10 4 1
... 0 0 0 1















 















1 0 0 0
... 1 0 0 0

0 1 0 0
... −3 1 0 0

0 0 1 0
... 13 −6 1 0

0 0 0 1
... −29 14 −4 1















,

so that the inverse matrix is









1 0 0 0
−3 1 0 0
13 −6 1 0

−29 14 −4 1









.

4. We’re starting with the matrix A =





1 2 3
−2 1 7

2 2 1



 .
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(a) We can check that A is invertible, and find the inverse at the same time, by
row-reducing:









1 2 3
... 1 0 0

−2 1 7
... 0 1 0

2 2 1
... 0 0 1









 









1 0 0
... −13 4 11

0 1 0
... 16 −5 −13

0 0 1
... −6 2 5









and so the inverse of A is the matrix B =





−13 4 11
16 5 −13
−6 2 5



.

(b) If T is the linear map T : R
3
−→ R

3 corresponding to the matrix A, solving the
system of equations is the same as finding those vectors (x, y, z) with T (x, y, z) =
(a, b, c). Since the transformation T is invertible (its matrix A is invertible), we
know that there is a unique solution (x, y, z) for each (a, b, c) in R

3.

Alternatively, since the RREF of A is the identity matrix I3, the usual argument
with the row reduced form shows us that there is a unique solution. This is of
course really the same argument as the one above.

(c) The definition of the inverse transformation T−1 is that it undoes what T does,
so that for any vector (a, b, c), T−1(a, b, c) is exactly the vector (x, y, z) such that
T (x, y, z) = (a, b, c). Since we already know the matrix B for T−1, we can use this
to compute (x, y, z) in terms of (a, b, c):





x

y

z



 =





−13 4 11
16 5 −13
−6 2 5









a

b

c



 =





−13a + 4b + 11c
16a + 5b − 13c
−6a + 2b + 5c



 .

5.

(a) The RREF is:

[

9 5
... 1 3 2

5 3
... 1 1 3

]

 

[

1 0
... −1 2 −

9

2

0 1
... 2 −3 17

2

]

.

(b) If we want to solve the system A~x = ~b1 for ~b1 = (1, 1), the method we know is to
write down the augmented matrix and put it into RREF:

[

9 5
... 1

5 3
... 1

]

 

[

1 0
... −1

0 1
... 2

]

.

and so see that (x, y) = (−1, 2) is the solution to the equations A~x = ~b1.
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We could do the same with ~b2 and ~b3, but there’s no need: the answer from part
(a) contains exactly all these row reductions simultaneously; the vectors ~b1, ~b2,

and ~b3 are exactly the column vectors after the dots in part (a), and the matrix A

is exactly the 2 × 2 matrix before the dots.

Therefore, from part (a), we can read off that the unique solution to A~x = ~b2 is

(x, y) = (2,−3), and for A~x = ~b3 is (x, y) = (−9

2
, 17

2
).

(c) Suppose that T is the linear transformation given by A. Since A is an invertible
matrix, T is an invertible transformation, and so it has an inverse transformation
T−1 which undoes what T does.

The matrix for T−1 is just the inverse matrix B for A. Since T−1 undoes what
T does, the vector T−1(~e1) is the unique vector ~v1 so that T (~v1) = ~e1. Similarly,
T−1(~e2) is the unique vector ~v2 so that T (~v2) = ~e1.

Since the columns of B are exactly the vectors T−1(~e1) and T−1(~e2) (that’s how
we compute the matrix for any linear transformation) this shows that A~v1 = ~e1

and A~v2 = ~e2.

(d) Part (c) tells us that to find the first column of B, we just need to find the vector
~v1 = (x1, y1) which is the solution to A~v1 = ~e1, and to find the second column of
B we need to find the vector ~v2 = (x2, y2) which is the solution to A~v2 = ~e2.

This amounts to solving two systems of equations. We could solve them separately,
doing two separate row reductions:

[

9 5
... 1

5 3
... 0

]

 

[

1 0
... 3

2

0 1
... −

5

2

]

and

[

9 5
... 0

5 3
... 1

]

 

[

1 0
... −

5

2

0 1
... 9

2

]

.

But parts (a) and (b) tell us that we get the same answer if we just do it all at
once:

[

9 5
... 1 0

5 3
... 0 1

]

 

[

1 0
... 3

2
−

5

2

0 1
... −

5

2

9

2

]

.

And that’s why row reducing

[

A
... I2

]

gives

[

I2

... B

]

, with B the inverse of A.

5


