
Math 110 Answers for Homework 5

1. Plugging in the values t = −1, t = 2, and t = −3 into the polynomial a+bt+ct2 +dt3,
we see that the map T from R

4 to R
3 described is given by the formula

T (a, b, c, d) = (a − b + c − d, a + 2b + 4c + 8d, a − 3b + 9c − 27d).

(a) Here are two equally valid ways to see that this is a linear transformation:

(i) From the explicit formula, plugging the vector (a, b, c, d) into T has the same
result as multiplying the vector by this matrix:

A =





1 −1 1 −1
1 2 4 8
1 −3 9 −27





The function is therefore linear, since functions given by a matrix are linear.
More generally, if a function is given by explicit formulas, and the formulas
are “linear” (i.e., only involve expressions in the variables of degree 1, with
no constant term), then the function is linear – the same argument applies:
the function can always be given by a matrix.

(ii) We can directly verify the properties of linearity:

T (a1 + a2, b1 + b2, c1 + c2, d1 + d2) =

(a1 + a2 − b1 − b2 + c1 + c2 − d1 − d2,

a1 + a2 + 2b1 + 2b2 + 4c1 + 4c2 + 8d1 + 8d2,

a1 + a2 − 3b1 − 3b2 + 9c1 + 9c2 − 27d1 − 27d2)

Which is the sum of

T (a1, b1, c1, d1) = (a1− b1 + c1−d1, a1 +2b1 +4c1 +8d1, a1−3b1 +9c1−27d1)

and

T (a2, b2, c2, d2) = (a2− b2 + c2−d2, a2 +2b2 +4c2 +8d2, a2−3b2 +9c2−27d2)

Similarly, for any number k,

T (ka, kb, kc, kd) = (ka−kb+kc−kd, ka+2kb+4kc+8kd, ka−3kb+9kc−27kd).

= k T (a, b, c, d).

The function T is therefore a linear transformation.
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(b) The matrix for T is the matrix A given above. (Which we can find in the usual
way by plugging in the vectors ~e1, ~e2, ~e3, and ~e4). In RREF, this matrix is





1 −1 1 −1
1 2 4 8
1 −3 9 −27





 





1 0 0 6
0 1 0 5
0 0 1 −2





From this we see that the kernel is the span of the vector (6, 5,−2,−1).

Alternatively, thinking about the map in terms of polynomials, we’re looking for
polynomials p of degree three such that p(−1) = 0, p(2) = 0, and p(−3) = 0. But
saying that plugging in a value into polynomial gives zero is the same thing as
saying that we’ve found a factor: If p(−1) = 0 then (t + 1) must be a factor of p,
if p(2) = 0 then (t − 2) is a factor, and if p(−3) = 0 then (t + 3) is a factor. If all
three are zero, then (t + 1)(t − 2)(t + 3) must be factors of p. Since we’re looking
for polynomials of degree 3, and this is already a polynomial of degree 3, the only
possibility is multiples of this polynomial. I.e., since

(t + 1)(t − 2)(t + 3) = −6 − 5t + 2t2 + t3,

the kernel must be scalar multiples of (−6,−5, 2, 1).

(c) This question is asking for all the polynomials p for which

(p(−1), p(2), p(−3)) = (−11, 19,−131),

i.e., in terms of the coefficients of p, we’re looking for all the vectors ~x in R
4 with

T (~x) = (−11, 19,−131). We already know the kernel of T , and we know that the
vector ~x1 = (1, 5,−4, 3) is sent to (−11, 19,−131).

The vectors ~x sent to (−11, 19,−131) by T are therefore all of the form ~x = ~x1 +~v,
with ~v in ker(T ), i.e., that

~x = (1, 5,−4, 3) + s(6, 5,−2,−1) = (1 + 6s, 5 + 5s,−4 − 2s, 3 − s) with s ∈ R

are all the vectors with this property. Rewriting this in terms of polynomials, we
see that the polynomials p which have the values we want are all of the form

p(t) = (1 + 6s) + (5 + 5s)t + (−4 − 2s)t2 + (3 − s)t3.

for any s ∈ R.
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(d) Taking the derivative of the polynomial p~v = a + bt + ct2 + dt3 and plugging in
t = 4, we see that the formula for p′

~v(4) in terms of a, b, c, and d is

p′

~v(4) = b + 8c + 48d

So, the vectors ~v = (a, b, c, d) such that p′

~v(4) = 0 are exactly the vectors with

b + 8c + 48d = 0

How can we see that this is a subspace? The fastest way is to say that it is
the kernel of a linear map, the linear transformation T ′ : R

4 −→ R given by
T ′(a, b, c, d) = b + 8c + 48d, or equivalently , the one given by the matrix

[

0 1 8 48
]

.

An alternate way to show that this is a subspace is to use the formula to verify
the subspace properties directly.

2. Kernel Puzzlers

(a) If A is an n × p matrix, and B a p × m matrix, with ker(A) = im(B), then the
n × m matrix AB is the zero matrix, the matrix where every entry is zero.

Why is that? Well, since multiplication of matrices represents composition of the
linear tranformations, the conditions tell us that for any vector ~v in R

m, B~v is in
the kernel of A, and so A(B~v) = ~0. So putting each of ~e1, ~e2, . . . , ~em through
C = AB will give the zero vector. This means that the all the columns of C are
zero vectors (since that’s how we find the columns of the matrix), and so C is the
zero matrix.

In fact, we just need that im(B) is contained in ker(A) for this to be true – we
don’t need them to be actually equal.

(b) The relation is that ker(C) is the intersection of ker(A) and ker(B).

If A is the matrix

A =











a11 a12 · · · a1m

a21 a22 · · · a2m

...
...

. . .
...

ap1 ap2 · · · apm
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Then vectors in the kernel of A are all the vectors ~x = (x1, . . . , xm) which satisfy
the equations:

a11x1 + a12x2 + · · ·+ a1mxm = 0

a21x1 + a22x2 + · · ·+ a2mxm = 0
...

...
... =

...

ap1x1 + ap2x2 + · · ·+ apmxm = 0

And if B is the matrix

B =











b11 b12 · · · b1m

b21 b22 · · · b2m

...
...

. . .
...

bq1 bq2 · · · bqm











Then vectors in the kernel of B are all the vectors ~x = (x1, . . . , xm) which satisfy

the equations:

b11x1 + b12x2 + · · ·+ b1mxm = 0

b21x1 + b22x2 + · · ·+ b2mxm = 0
...

...
... =

...

bq1x1 + bq2x2 + · · ·+ bqmxm = 0

The effect of “stacking” matrix A on top of matrix B and then asking for the
kernel is just to look for vectors ~x = (x1, . . . , xm) which satisfy all the equations
at once. In other words, we’re looking for exactly those vectors ~x which are in the
kernel of A and in the kernel of B, i.e., those vectors in the intersection of ker(A)
and ker(B).

(c) Yes, if ker(A3) = ker(A2), then ker(A4) = ker(A3).

Since matrix multiplication corresponds to composition of functions, any vector
in the kernel of A will be in the kernel of AA (going through the first A already
sends it to zero). Similarly, any vector in the kernel of A2 will be in the kernel of
A3. What’s surprising is that any vector in the kernel of A3 is also in the kernel
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of A2. In other words, if we start with a vector ~w and put it through A three
times and get the zero vector, it must have already been zero after going through
A twice.

Suppose we have a vector ~v which is in the kernel of A4, i.e., putting it through
A four times gives you zero. If we let ~w = A~v, then this means that putting
~w through A3 gives the zero vector. Since ker(A3) = ker(A2), this means that
putting ~w through A2 also gives the zero vector, or, rewriting this in terms of ~v

that putting ~v through A3 gives the zero vector.

This shows that any vector in the kernel of A4 is already in the kernel of A3. Since
any vector in the kernel of A3 is automatically in the kernel of A4, the two kernels
are equal.

(d) If T : R
n −→ R

m is a linear transformation, and ~v1,. . . , ~vk are linearly dependent
vectors in R

n, then the vectors T (~v1),. . . , T (~vk) must be linearly dependent too.

Since ~v1,. . . , ~vk are linearly dependent, there must be numbers c1,. . . , ck, at least
one of which is nonzero, with

c1~v1 + c2~v2 + · · ·+ ck~vk = ~0.

But now, applying the linear transformation T to both sides, we get:

~0 = T (~0) = T (c1~v1 + · · ·+ ck~vk) = c1 T (~v1) + · · ·+ ck T (~vk)

which is a linear dependence relation for T (~v1),. . . , T (~vk).

3. Here are two (among many) ways of seeing that T (~0) = ~0 for any linear transformation
T :

(i) Use the relation T (c~v) = c T (~v) with c = 0 and ~v any vector to get

T (~0) = T (0~v) = 0 T (~v) = ~0.

(ii) Use the relation T (~v + ~w) = T (~v) + T (~w) with ~w = −~v to get

T (~0) = T (~v − ~v) = T (~v) − T (~v) = ~0.

Of course, just because T (~0) = 0 doesn’t mean that T has to be linear (for example,
T : R

3 −→ R given by T (x, y, z) = x2 + y2 + z2 isn’t linear), but if T (~0) 6= ~0 (like
T (x, y, z) = x + y − z + 2), then we can be sure that T isn’t a linear transformation.

4.
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(a) The image is spanned by (1, 1, 1), and (1, 2, 3), and this is the smallest number of
vectors we can use. The kernel is {~0}.

(b) The image is spanned by (1, 1, 1), (1, 2, 3), and (1, 5, 7), and we need them all.
One way of seeing this is to put the matrix into RREF. If we do this we get I3,
and so we see that all column vectors are linearly independent. This also means
that the kernel is just the zero vector again.

(c) The image is spanned by (1, 4) and (2, 5). We don’t need (3, 5) since (3, 5) =
−5

3
(1, 4) + 7

3
(2, 5). The kernel is spanned by (5,−7, 3).

(d) The image is spanned by (1, m) (it’s the line of slope m!), and the kernel by (m,−1)
(the line perpendicular to the line of slope m).

5.

(a) Row reducing, we get

[

1 −3
−2 6

]

 

[

1 −3
0 0

]

, from which we see that the

kernel is spanned by (3, 1).

(b) Finding the matrix of T in the usual way (seeing where ~e1, . . . , ~e4 go), we get









1 0 −3 0
0 1 0 −3

−2 0 6 0
0 −2 0 6









which has RREF:








1 0 −3 0
0 1 0 −3
0 0 0 0
0 0 0 0









.

From the RREF we see that the kernel is spanned by (3, 0, 1, 0) and (0, 3, 0, 1).

(c) A general vector ~v in the kernel is of the form (3t1, 3t2, t1, t2), corresponding to
the matrix

M~v =

[

3t1 3t2
t1 t2

]

The image of this matrix is spanned by (3, 1).
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(d) To say that the vector ~v is in the kernel of T is the same as saying that the product
AM~v is the zero matrix. (The zero 2×2 matrix what corresponds to ~0 = (0, 0, 0, 0)
under the rule.)

What kind of condition guarantees that the product AM~v is the zero matrix? By
question 2(a), what we need is that im(M~v) is contained in ker(A). Since ker(A) is
only one dimensional, if M~v isn’t the zero matrix we must have im(M~v) = ker(A),
which explains the equality in parts (a) and (c).
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