Math 110 Answers for Homework 7

1. If T : R®™ — R™ is a linear transformation, then
(a) For any vector Z in R", and any vector v in ker(7"), then
T(Z+7) = T(Z) +T(0) = T(%) + 0 = T(z),
So & and ¥ + U have the same image in R™ under the linear transformation 7.

(b) Conversely, suppose that Z; and Zy are two vectors in R"™ with the same image b
in R™. Then if we set ¥ = ¥y — 7y, it’s clear that ¥; + U = ¥, and

T(0) = T(Zy — 1) = T(Z,) — T(#) =b—b =0,
so U is in the kernel of 7.
(¢) If b is a vector in R™ and 7 a vector in R” with 7'(#) = b (i.e., b is in the image

of T, and 7 is any one of the vectors in R™ mapping to R™), then

e For any vector 7 in ker(T), T = &, + 7 is a vector in R” such that T'(Z) = b,
by part (a), so all the vectors of the form &) +¥ with ¥ in ker(7") are solutions
to T'(Z) = b.

e For any vector Z which is a solution to T(Z) = b, part (b) shows that there
is a vector ¥ in ker(T") so that ¥ = #; + ¥. In other words, not only (from

above) are vectors of the form ) + 7 solutions to T'(Z) = b, but every solution
to the equation T'(Z) = b is of this form.

2. The linear transformation 7" : R? — R3? is given by

6 —3
or (equivalently) the matrix | 2 —1
4 =2

(a) From the equations, the kernel is the solution to the equations 2x—y = 0, 6x—3y =
0, and 4z — 2y = 0 which of course are all multiples of the first equation 2z —y =0
or y = 2.

The kernel is therefore the line y = 22 in R?, which we can also describe as being
spanned by the vector (1,2).



(b) From the equations this is the same as solving y — 2z = 1, or y = 2z + 1.

()

This time this is the same as solving y — 2z = —2 or y = 2x — 2.

(d) Here’s a sketch: R?

The three lines are shown in black, along with some parallel lines, which are dotted.

The lines shown are parallel. All points on the same line are mapped to the same
point in R? by T, the middle line is the kernel, mapping to 0.

What question (1) tells us is that two points Z» and #; of R? map to the same
point of R? if and only if their difference ¥, — #; is in the kernel.

Or, if we have any point & of R?, we find all other points of R? mapping to the
same point T(Z) in R? by translating Z by elements of the kernel, or equivalently
translating the kernel by #. This is the same thing as saying the the lines must all
be parallel.

Geometrically, the map T is collapsing R? along these parallel lines, with a one
dimensional image in R3.



3. Suppose that A is a 3 x 2 matrix, and B a 2 x 3 matrix. The matrix A describes a
linear map from R? to R3, and the matrix B a linear map from R? to R2.

(a)

Since A is a map from R? to R3, the dimension of im(A) can be at most 2. Therefore
since AB is the composition of the linear map given by B with the linear map
given by A, dim(im(AB)) can also be at most 2, but for a 3 x 3 matrix AB to be
invertible, we have to have dim(im(AB)) = 3.

An equivalent argument is to note that since B is a linear map from R? to R?, its
kernel ker(B) has to be at least one dimensional, i.e., there is some vector 7, 7 # 0
with B¢ = 0. But that means that AB7 = ( too, so there are nonzero vectors in
the kernel of AB, and that also means that AB can’t be invertible. (These were
the properties (vi) and (viii) of the last assignment.)

10 1 00
An easy exampleis A= | 0 1 | and B :{ :|With product
010
00
1 0
pa[1 0]

More generally (and the point of part (c)) is that as long as dim(im(A)) = 2 (i.e.,
the linear map given by A is surjective) and dim(im(B)) = 2 (i.e., that the linear
map given by B is injective) the map BA will have 2 dimensional image, and hence
(by one of the characterizations of invertible n x n matrices) be invertible.

If BA is invertible, then its kernel is just the zero vector 0, so the kernel of A must
be the zero vector too. (If ¥'is in ker(A), then ¢'is also in ker(BA), so ker(BA) =0
implies ker(A) = 0.) So, if BA is invertible, we must have dim(ker(A)) = 0.

On the other hand, if BA is invertible, then dim(im(BA)) = 2, so we must have
dim(im(B)) = 2, since anything in the image of BA is in the image of B. (For any
vector @ in R?, if there is a vector ¥ in R? with @ = BA#, then @ is the result of
applying the matrix B to the vector Aw in R3, and so  is in the image of B).

This shows that the dimension of im(B) must be at least 2, but it can also be at
most 2 since im(B) is contained in R2. Therefore dim(im(B)) = 2.

But now, by the “rank-nullity” theorem, dim(ker(B)) =3 —2 = 1.



4. If T, is rotation counterclockwise by «, and Ty rotation counterclockwise by angle 6
in R2, then

(a)

The composition T, o Ty is just rotation counterclockwise by angle o + 6.

The composition Ty o T, is also rotation counterclockwise by angle oo + @, so this
is an example of two matrices where the order of multiplication doesn’t matter.
(This doesn’t usually happen — even if A and B are both n X n matrices, the
products AB and BA usually aren’t the same.)

) i) | | ) o |
)

_ | cos(a) cos(f) — sin(a) cos(#) —(cos(a) sin(0) + sin(a) cos(6)) }
cos(a) sin(f) + sin(«) cos(6) cos(a) cos(f) — sin(a) cos(f) |-

Multiplying, the matrix for T, o Tj is [ sin

The matrix for rotation by a + 6 is [ cos(a +0)  —sin(a +06) } )

sin(fa+#6)  cos(a+0)
Since the matrices represent the same linear transformation, their entries must be

the same. Looking at the first columns of these matrices, this means that we must
have

cos(a+0) = cos(a)cos(f) — sin(a) cos(f), and
sin(aw +6) = cos(a)sin(f) + sin(a) cos(6).

Looking at the second columns gives the same identities, but in the opposite order.

If we compose the transformation Ty three times: Ty o Ty o Ty, the resulting linear
transformation is rotation by 36. Multiplying, we have

cos(f) —sin(6) r’ _ { cos(0) — 3 cos(#) sin*(0) —(3 cos?(#) sin(f) — sin®())
sin(f)  cos(6) 3 cos?(0) sin(#) — sin®(0) cos?(0) — 3 cos(#) sin?(0)

Comparing with the entries for the matrix for rotation by 36, we get the identities

cos(30) = sin®(#) — 3cos(f)sin?(0), and
sin(30) = 3cos?(#)sin(f) — sin®(6).



5. Matrix squaring and images.

(a)

A simple example is the matrix A = [ 8 (1) ] :

Its image and kernel are both the z-axis, i.e., the linear subspace spanned by (1,0).
One consequence (that we’ve seen before) is that A2 must be the zero matrix.

If A is an nXn matrix with A% = 0 (the zero matrix), then we have im(A) C ker(A),
i.e., the image of A must be contained in the kernel of A.

(We've gone through this type of argument before: suppose that @ is a vector
in the image of A, i.e., that there is some vector ¢ with @ = Av. Since AW =
A(A7) = A% = 0 (since A% = 0), we see that 0 is in the kernel of A.)

Let k£ be the dimension of the kernel of A, and ¢ the dimension of the image of A.
By the “rank-nullity” theorem, we have i + k = n.

On the other hand, since im(A) is contained in ker(A), we must have i < k.

This means that ¢ can be at most half the size of n. There are many ways to
combine the two equations above to get this, but one way is to note that 2i =
i+i<i+k=mn,s02i<nori<n/2

If n =10, we get i < 10/2 =5, and so dim(im(A4)) < 5.
Suppose that A is an n x n matrix with A2 = A.

If 7 is a vector in the image of A, there is a vector ¥ with «/ = Av. Multiplying
both sides of this equation by A on left (i.e., putting both of these vectors through
A) we get

AW = AAT = AU = 0.

The middle equality is because A? = A, and the last one because AT = , since
we chose chose ¥ with this property.

In other words, for any vector w in the image of A, Aw = .

If 7 is also in the kernel of A, then we have 0 = AW = &, so @ = 0. Le., the only
vector which ker(A) and im(A) have in common is the zero vector.

There are nontrivial examples of matrices with this property. For example, if A,,
is the matrix for “projection onto a line of slope m in R?”:

m

1 m

_ 1+m?2  1+m?2
Am_[ T ]
1+m?2  1+m?2

b}



from homework 3, 4(a), has this property. In fact, if A is an n x n matrix with
A? = A, then it turns out that A must be the matrix of projection onto some
subspace of R", something we will verify later in the course.



