
Math 110 Answers for Homework 8

The numbers are

a2001 = 334, 668

a2002 = 335, 002,

a2003 = 335, 336,

a2004 = 335, 671,

a2005 = 336, 005, and

a2006 = 336, 340.

Obviously the numbers are too big to compute by writing out all the possibilities. How
can we get a hold of the numbers a

n
without having to list all the possible sums each

time?

What we need is an organized way to count them. Following the way that we counted
the number of ways to write n as a sum using only 1’s and 2’s, let’s try this:

Let’s split the ways to write n as a sum into two categories: Those sums that
involve at least one 3, and those sums that involve no 3’s at all.

The sums of the second kind we already know how to count: they’re ways to write n as
a sum using only 1 and 2, and we know that the formula for the number of ways to do
that is bn

2
c + 1, where bxc means “round down the number x to the nearest integer”.

But the sums of the first kind are easy to count too – each of those sums has at least
one 3, and if we take out one of the 3’s, we get a sum adding up to n − 3. Conversely,
if we take any sum adding up to n − 3 and add 3, we get a sum involving at least one
3, and adding up to n. In other words, the number of sums of the first kind is exactly
a

n−3.

This gives us the recursive equation:

a
n

= a
n−3 +

⌊n

2

⌋

+ 1.

Now it seems like we do have a way to compute a
n

for any n: the recursive equation
above let’s us work backwards from any n down to small numbers, where we know the
answers, so the formula above will let us solve the problem.

Even though it will let us solve the problem, the formula above doesn’t seem the easiest
to work with (it’s the “rounding down” that seems hard to get a hold of). Maybe we
can do a little better.

What happens if we apply the recursion relation twice? That is apply it first to a
n
, and

then to a
n−3? That is, since (by the recursion equation)
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a
n−3 = a

n−6 +

⌊

n − 3

2

⌋

+ 1,

if we combine that with the equation for a
n
, we get

a
n

= a
n−3 +

⌊n

2

⌋

+ 1 = a
n−6 +

⌊n

2

⌋

+

⌊

n − 3

2

⌋

+ 2.

Did that help at all? It seems like things only got more complicated.

Well, in fact it did help. The problem with bn

2
c is that it behaves differently depending

on whether n is even or odd. If n is even, then bn

2
c = n/2, which is an integer. If n is

an odd number, then bn

2
c = n/2 − 1

2
, which is again an integer. The good thing about

the formula above is that if n is even, then n − 3 is odd, and if n is odd, then n − 3
is even. In other words, no matter if n is odd or even, each of the possibilities above
occurs exactly once for n and n − 3, and so we have

⌊n

2

⌋

+

⌊

n − 3

2

⌋

=
n

2
+

n − 3

2
−

1

2
=

2n − 4

2
= n − 2.

Taking into account the +2 in the formula for a
n

above, that means that we have

a
n

= a
n−6 + n,

and that does seem like a much easier formula!

At this point, we could start with n = 2001 and use the recursive formula over and over
to compute a2001, then do the same for n = 2002, etc. That still seems like a bit too
much work to do – just to compute a2001 we’d have to use the recursive formula 333
times, and that seems a bit much.

Why 333 times? Because 2001 = 333 · 6 + 3, and so since each recursive step brings n
down by 6, we’re going to have to apply it that many times until we get back down to
the numbers we know. In the case of 2001, we’d get all the way down to a3 = 3.

But, if we just write out what we’d get by doing all those steps, we see that we can
compute the sum directly:

a2001 = (333 · 6 + 3) + (332 · 6 + 3) + (331 · 6 + 3) + · · ·+ (2 · 6 + 3) + (1 · 6 + 3) + a3.

Which we can rewrite as

a2001 = 6(333 + 332 + 331 + · · ·+ 3 + 2 + 1) + 333 · 3 + a3.
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We know how to add all the numbers from 1 to 333: we have a formula for that. We
also know what a3 is (and of course, we can multiply 3 times 333), so we can compute:

a2001 = 6

(

333(333 + 1)

2

)

+ 999 + 3 = 334, 668.

We can use the same reasoning for the other n’s, but we can also try (again!) to do
things more generally. The previous pattern for the computation shows us that what
we need to know is how to write n as a multiple of 6, plus some number r which is
small (say between 0 and 5). That is, let’s write n = 6k + r with 0 ≤ r ≤ 5, i.e., r is
the remainder when we divide n by 6 (For 2001, we’d have k = 333, r = 3). Then the
recursion gives us

a
n

= (6k + r) + (6(k − 1) + r) + (6(k − 2) + r) + · · ·+ (6 · 2 + r) + (6 · 1 + r) + a
r
,

which we can again rewrite as

a
n

= 6(k + (k − 1) + (k − 2) + · · ·+ 2 + 1) + k · r + a
r

= 6

(

k(k + 1)

2

)

+ k · r + a
r

= 3k(k + 1) + k · r + a
r

Here’s a table where we use this formula to compute all the a
n
’s

n k r a
r

a
n

= 3k(k + 1) + k · r + a
r

2001 333 3 a3 = 3 3 · 333(334) + 3 · 333 + 3 = 334, 668
2002 333 4 a4 = 4 3 · 333(334) + 4 · 333 + 4 = 335, 002
2003 333 5 a5 = 5 3 · 333(334) + 5 · 333 + 5 = 335, 336
2004 334 0 a0 = 1 3 · 334(335) + 0 · 333 + 1 = 335, 671
2005 334 1 a1 = 1 3 · 334(335) + 1 · 333 + 1 = 336, 005
2006 334 2 a2 = 2 3 · 334(335) + 2 · 333 + 2 = 336, 340

Well, that gives us the answer, and it’s certainly getting easier and easier to calculate
these numbers. Could we do any better than this?

In fact, we can, but now it gets a bit trickier. I’d like to figure out a formula for a
n

where I don’t have to break n down into the form n = 6k + r. I guess I’m wondering if
there is a formula just in terms of n, and if I can take the above formula and somehow
wrestle it into that form.

Let’s suppose that I know what r is (for our particular n). Then k = (n − r)/6. If we
put this into the formula, we get
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a
n

= 3k(k + 1) = k · r + a
r

= 3

(

n − r

6

) (

n − r

6
+ 1

)

+

(

n − r

6

)

· r + a
r

Expanding this, we get

a
n

=

(

n2

12
+

n

2

)

−

(

r2

12
+

r

2

)

+ a
r
.

Which is getting better and better. Now we only need to know the remainder r when we
divide n by 6 and the above formula will give us the answer. But we can even remove
the part of the formula involving r: If we notice, for r = 0, 1, 2, 3, 4, 5, the values of
− r

2

12
− r

2
+ a

r
are:

r a
r
− r

2

12
− r

2

0 1

1 5

12

2 2

3

3 3

4

4 2

3

5 5

12

and that means that
(

n
2

12
+ n

2

)

−
(

r
2

12
+ r

2

)

+ a
r

must be equal to
⌊

n
2

12
+ n

2
+ 1

⌋

, the

integer we get by rounding down n
2

12
+ n

2
+1 whenever 1 ≤ r ≤ 5, and equal to n

2

12
+ n

2
+1

when r = 0.

Since the round down of an integer is just that same integer, this means that we in fact
have

a
n

=

⌊

n2

12
+

n

2
+ 1

⌋

no matter what n is, which is perhaps the most efficient formula, although not necessarily
the prettiest.
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