
Math 110 Answers for Homework 9

1. Suppose that T : R
n −→ R

m is a function, and we know that this function obeys
these two rules:

A: T (~v + ~w) = T (~v) + T (~w) for any two vectors ~v, ~w in R
n.

B: T (c~v) = c T (~v) for any vector ~v in R
n, and any number c.

We’d like to know if this means that T also has to obey this rule:

C: T (c1 ~v1 + c2 ~v2 + · · · + cr~vr) = c1 T (~v1) + c2 T (~v2) + · · · + cr T (~vr), for any vectors
~v1, . . . , ~vr in R

n, and any numbers c1, . . . , cr.

First, let’s establish that rule A tells us that we can move more than just the sum of
two vectors through the brackets. More formally, let’s establish that if T obeys rule A,
then it also obeys

Ar: T (~v1 + · · ·+ ~vr) = T (~v1) + · · ·+ T (~vr) for any r vectors ~v1, . . . , ~vr in R
n.

I guess it’s pretty clear that A should imply Ar for all r ≥ 2; presumably we just need
to repeatedly use A somehow. One nice way to organize that argument is to set it up
as an induction. (Reminder: induction is just an organizational tool we can try and
use in an argument, and not some magic phrase that automatically confers validity on
the conclusion. The correctness of an argument is more important than any particular
form used to express or organize it).

Proof: (that if A is true, then Ar is true for all r ≥ 2) by induction on r:

Base case: r = 2 (you don’t always have to start with 1. . . ): That’s exactly
statement A, which we’re assuming to be true, so the base case is true.

Inductive step: Assume that Ar is true for r, then given r + 1 vectors ~v1,
. . . , ~vr, ~vr+1, group their sum as (~v1 + · · ·+ ~vr) + ~vr+1, then

T (~v1 + · · · + ~vr+1) = T ((~v1 + · · · + ~vr) + ~vr+1)

= T (~v1 + · · · + ~vr) + T (~vr+1) [by rule A]

= T (~v1) + · · · + T (~vr) + T (~vr+1) [using Ar on the first part]

which is exactly the induction step.
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Okay, now we know that if a function T obeys rule A, it also obeys Ar for all r ≥ 2.
Let’s use this and B to show that T also obeys rule C for any choices of c1,. . . , cr, and
~v1, . . . , ~vr:

For any such choices

T (c1~v1 + · · · + cr~vr) = T (c1~v1) + · · · + T (cr~vr) [using rule Ar]

= c1 T (~v) + · · ·+ cr Tr(~vr) [using rule B on each of the T (ci~vi)]

which is exactly rule C.

If T obeys rule C, does it have to obey A and B? Yes – they’re both special cases of the
more general rule C. If we apply rule C with r = 2 and c1 = c2 = 1, it says

T (~v1 + ~v2) = T (~v1) + T (~v2),

which is exactly rule A. If we apply rule C with r = 1 and c1 any number, then we get

T (c1~v1) = c1 T (~v1)

which is exactly rule B. Therefore a function T : R
n −→ R

m satisfies rules A and B if
and only if it satisfies rule C.

2. The statement that

RREF(AB) = RREF(A) · RREF(B)

for matrices A and B which can be multiplied is not true in general. Here’s a simple
counterexample:

A =

[

1 1
1 1

]

, B =

[

1 0
0 2

]

.

Then RREF(A) =

[

1 1
0 0

]

, RREF(B) =

[

1 0
0 1

]

, and

RREF(A) · RREF(B) =

[

1 1
0 0

]

·

[

1 0
0 1

]

=

[

1 1
0 0

]

.

But AB =

[

1 2
1 2

]

, so RREF(AB) =

[

1 2
0 0

]

which is not what we got above!

So, the statement is simply not true.
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There is a similar sounding statment which is true though: if you multiply two matrices
in RREF, then the result will still be in RREF. One of the arguments for this is com-
putational – you think about what a matrix in RREF looks like, and then try and deal
with what the product looks like. Another is to give a slightly different characteriza-
tion of what it means for a matrix to be in RREF, one better suited to thinking about
composition of functions.

That statment doesn’t contradict the fact that the previous one is false. What it tells
us is that RREF(A) · RREF(B) will always be a matrix in RREF, there’s just simply
no guarantee that this will be the same matrix in RREF as RREF(AB).

3.

(a) Here’s a proof of the formula which doesn’t use induction at all: If

Sm = a + ar + ar2 + · · ·arm−1 + arm,

then
r · Sm = ar + ar2 + ar3 + · · ·arm + arm+1,

so subtracting gives

(r−1)Sm = −a+(ar−ar)+(ar2−ar2)+ · · ·+(arm−arm)+arm+1 = a(rm+1−1).

Since r 6= 1, we can divide both sides by (r − 1) to get the formula.

Here’s a proof which does use induction:

Base case: m = 1: The sum is a + am, and the predicted formula is a(r2
−1)

r−1
.

Since r2−1 = (r−1)(r +1), this is the same as a(r +1) = ar +a which verifies
the base case. We could also start the base case with m = 0, in which case the
sum would be a, and the predicted answer a(r−1)

r−1
= a, which also works.

Inductive step: Suppose that the formula is true for m, then

a + ar + · · ·+ arm + arm+1 =
a(rm+1 − 1)

r − 1
+ arm+1

=
a(rm+1 − 1) + (arm+2 − arm+1)

r − 1

=
a(rm+2 − 1)

r − 1

which is the formula for m + 1.
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(b) Suppose that an, bn, cn, and dn are the entries of An, i.e., that

An =

[

an bn

cn dn

]

.

(Note: If you haven’t seen this kind of language before, this isn’t really an
assumption. It’s a polite way of saying that we’re establishing some notation, that
we’re defining the numbers an, bn, cn, and dn to be those numbers that show up
when we compute An.)

Here are some small powers of A:

A =

[

2 1
0 3

]

, A2 =

[

4 5
0 9

]

, A3 =

[

8 19
0 27

]

, and, A4 =

[

16 65
0 81

]

.

According to the notation we’ve established, that means that a1 = 2, a2 = 4,
a3 = 8, and a4 = 16. (and also that b1 = 1, b2 = 5, b3 = 19, and b4 = 65, that
d1 = 3, d2 = 9, d3 = 27, and d4 = 81, and that c1 = c2 = c3 = c4 = 0.)

From the examples, it’s probably pretty clear that the correct formulas should be
an = 2n, dn = 3n, and cn = 0 for all n ≥ 0. It’s only a slightly larger stretch to
notice that bn+an is always dn, which if true means that we must have bn = 3n−2n.

In order to prove these formulas, we can use the recursive relation:

[

an+1 bn+1

cn+1 dn+1

]

= An+1 = AnA =

[

an bn

cn dn

] [

2 1
0 3

]

=

[

2an 3bn + an

2cn 3dn + cn

]

.

In other words, that

an+1 = 2an

bn+1 = 3bn + an

cn+1 = 2cn, and

dn+1 = 3dn + cn

For all n ≥ 1.

4



To organize the proof that our formulas hold for all n, we can again use induction;
let’s use it to prove all the formulas simultaneously:

Base case: n = 1. Here we just have to check that a1 = 21 = 2, b1 = 31−21 =
1, c1 = 0, and d1 = 31 = 3, which we did when we wrote out the entries of A.
We could also check for n = 0, in which case A0 is just the identity matrix.

Inductive step: Supposing the formulas true for n, and using the recursive
relations, we have

an+1 = 2an = 2 · 2n = 2n+1,

bn+1 = 3bn + an = 3(3n − 2n) + 2n = 3n+1 − (3 − 1)2n = 3n+1 − 2n+1,

cn+1 = 2cn = 2 · 0 = 0, and

dn+1 = 3dn + cn = 3 · 3n + 0 = 3n+1

proving the inductive step.

So, the formulas are true for all n ≥ 0.

What about for negative n? If we compute a few values:

A−1 =

[

1
2

−1
6

0 1
3

]

, A−2 =

[

1
4

− 5
36

0 1
9

]

, and A−3 =

[

1
8

− 19
216

0 1
27

]

we can see that the entries still match the formulas. Certainly for these values
an = 2n, cn = 0, dn = 3n, and (after a little computation) bn = 3n−2n for n = −1,
−2, and −3.

So, the formulas seem to be true for negative n as well. How could we prove this?
I guess one way might be to use induction again, this time starting at n = −1
and going down. There is a faster way though: We want to see that the formulas
give the matrix An for negative n. We know that the formulas are correct for A−n

(since now −n is positive), and if we use these formulas and multiply the matrices
together we get:

[

2n 3n − 2n

0 3n

] [

2−n 3−n − 2−n

0 3−n

]

=

[

1 2n(3−n − 2−n) + 3−n(3n − 2n)
0 1

]

=

[

1 2n3−n − 1 + 1 − 2n3−n

0 1

]

=

[

1 0
0 1

]

.
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In other words, the formulas for negative n give a matrix which is the inverse of
the matrix for A−n. Since the inverse of a matrix (if it exists) is unique, this means
that the formulas for negative n must give An, and the formulas are true for all n.

Next semester we’ll see that something like this almost always happens: for almost
every square matrix A, there are formulas for the entries of the powers of A, and
each entry will be a linear combination of the n-th powers of some numbers.
These numbers are special numbers attached to the matrix A, ones which govern
its behaviour and the behaviour of its powers.

4. Suppose that A is an n×n matrix, and that Am is the zero matrix, for some number
m ≥ 1. We want to show that An is the zero matrix.

Here are the details of the two strategies suggested:

(I) To start with, the sequence of vector spaces ker(Ar) for r = 1, 2, . . . are each
contained in the next:

ker(A) ⊆ ker(A2) ⊆ ker(A3) ⊆ · · ·

We’ve seen this kind of argument before (for example, on homework 6, 2(a), or
homework 5 2(c)): If ~v is in ker(Ar), then Ar+1~v = AAr~v = A~0 = ~0. Therefore we
must have

dim(ker(A)) ≤ dim(ker(A2)) ≤ dim(ker(A3)) ≤ · · ·

Suppose that at one point we have dim(ker(Ar)) = dim(ker(Ar+1). Then we
actually have ker(Ar) = ker(Ar+1) since one is contained in the other, and they
both have the same dimension.

But now, following the same argument as homework 5, 2(c), we can show that
ker(Ar+1) = ker(Ar+2): Take any vector ~v in ker(Ar+2), and let ~w = A~v. Then
Ar+1 ~w = ~0, so ~w is in ker(Ar+1) and hence (since ker(Ar+1) = ker(Ar)) ~w is in
ker(Ar) too. But then Ar ~w = ~0, so ArA~v = ~0, i.e., ~v is in ker(Ar+1. This argument
shows that ker(Ar+1) ⊂ ker(Ar+1) and hence they are equal, since we already know
that ker(Ar+1) ⊆ ker(Ar+2).

Continuing by induction, we can then show that ker(Ar+2) = ker(Ar+3), ker(Ar+3) =
ker(Ar+4), etc. In other words, once we have dim(ker(Ar) = dim(ker(Ar+1) for
some r, they’re equal for all higher powers of A.
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So, at each step, dim(ker(Ar)) either increases, or stays the same, and once it stays
the same once it remains the same for ever. Since eventually ker(Ar) = n, it can’t
stop until the dimension of the kernel is n, ie., all of R

n.

Since ker(A) is at least one dimensional (if it were zero dimensional, A would
be invertible, and so it would be impossible for some power of A to be the zero
matrix) ker(A2) is at least two dimensional, ker(A3) at least three dimensional,
etc, up to ker(An) is at least n dimensional. Therefore, An is the zero matrix.

(II) Let r be the smallest positive integer so that Ar is the zero matrix. Since Ar−1 is
not the zero matrix, it must have a nonzero column. Suppose that the i-th column
is nonzero, then since Ar−1~ei is the i-th column of Ar−1, it is a nonzero vector. In
other words, there is a vector ~v with Ar−1~v 6= ~0

Look at the r vectors ~v, A~v, A2~v, . . . , Ar−1~v. We want to see that they are linearly
independent. Suppose that there is a linear relation

c0~v + c1A~v + c2A
2~v + · · ·+ cr−1A

r−1~v = ~0

Multiplying through by Ar−1 we get

c0A
r−1~v + c1A

r~v + c2A
r+1~v + · · ·+ cr−1A

2r−2~v = ~0

But since Ar is the zero matrix, the above sum is just c0A
r−1~v = ~0. Since Ar−1~v 6=

~0, this means that c0 = 0, so the supposed linear relation is now of the form

c1A~v + c2A
2~v + · · ·+ cr−1A

r−1~v = ~0

Multiplying through by Ar−2, we get c1A
r−1~v = ~0, and so c1 = 0 too. Continuing

by induction, we can show that of the ci’s are zero, and hence the vectors are
linearly independent.

But, since R
n is n-dimensional, it can have at most n linearly independent vectors.

Above we constructed r linearly independent vectors, so we must have r ≤ n, i.e.,
An must be the zero matrix, since the smaller power Ar already is.
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