1. Define a sequence of integers by $a_0 = 3$, $a_1 = 6$, $a_2 = 14$, and for $n \ge 3$,

$$a_{n+3} = 6a_{n+2} - 11a_{n+1} + 6a_n.$$

For instance, $a_3 = 36$, since $6a_2 - 11a_1 + 6a_0 = 6(14) - 11(6) + 6(3) = 36$, and $a_4 = 98$ since $6a_3 - 11a_2 + 6a_1 = 6(36) - 11(14) + 6(6) = 98$.

Find (and prove) a formula for a_n for all $n \ge 0$.

SUGGESTED OUTLINE: Solve this in the same way we found a formula for the Fibonacci numbers. Look at the set V of infinite sequences $(x_0, x_1, x_2, x_3, \ldots)$ which satisfy the recursion conditions $x_{n+3} = 6x_{n+2} - 11x_{n+1} + 6x_n$ for all $n \ge 0$. The sequence (a_0, a_1, a_2, \ldots) is part of this set.

Briefly indicate why V is a subspace of the vector space of all possible sequences, and explain what its dimension is and why.

Look for elements of V of the form

$$(1, \alpha, \alpha^2, \alpha^3, \alpha^4, \alpha^5, \ldots).$$

Can you find enough elements of this type to form a basis of V?

If so, you can write the *a* sequence (which is an element of V) as a linear combination of these elements, and then find a formula for a_n .

2. Polynomial Interpolation:

Let P_5 be the vector space of polynomials of degree ≤ 5 .

(a) What is the dimension of P_5 ?

Suppose that x_1, x_1, \ldots, x_6 are any six distinct real numbers, and y_1, y_2, \ldots, y_6 any real numbers at all. I'd like to prove that there is a unique polynomial p in P_5 with $p(x_1) = y_1, p(x_2) = y_2, \ldots, p(x_6) = y_6$. In other words, that given any six different x-values, and any six y-values, there is a unique polynomial of degree ≤ 5 with height y_i over $x_i, i = 1, 2, \ldots, 6$.

Define a map $T: P_5 \longrightarrow \mathbb{R}^6$ by

$$T(p) = (p(x_1), p(x_2), \dots, p(x_6))$$

i.e., by plugging in x_1 , through x_6 .

- (b) Explain why T is a linear map from P_5 to \mathbb{R}^6 .
- (c) Explain why the statement "there is a unique p in P_5 with $p(x_i) = y_i$ for $i = 1, \ldots, 6$ " is the same as saying that $\ker(T) = \vec{0}$ and $\operatorname{im}(T) = \mathbb{R}^6$.
- (d) Explain why the above is the same as saying that $\ker(T) = \vec{0}$.
- (e) What does it mean in terms of x_1, \ldots, x_6 for a polynomial p to be in ker(T)? By thinking about factoring, show that ker $(T) = \vec{0}$, the zero polynomial.

3.

(a) If $T_1: V_1 \longrightarrow V_2$ and $T_2: V_1 \longrightarrow V_2$ are linear transformations between the same two vector spaces V_1 and V_2 , show that $T_1 + T_2$, defined by

$$(T_1 + T_2)(f) = T_1(f) + T_2(f)$$

for all f in V_1 is also a linear transformation from V_1 to V_2 .

(b) If $T: V_1 \longrightarrow V_2$ is a linear transformation from V_1 to V_2 , and c any number, show that cT, defined by

$$(cT)(f) = c(T(f))$$

for any f in V_1 is a linear transformation from V_1 to V_2 .

(c) What parts (a) and (b) show is that, given any two vector spaces V_1 and V_2 , the set of possible linear transformations from V_1 to V_2 is also a vector space. If V_1 is \mathbb{R}^3 , and V_2 is \mathbb{R}^2 , what is the dimension of this vector space, the vector space of all linear maps from \mathbb{R}^3 to \mathbb{R}^2 ?

4. If p(x) is a polynomial of degree d, say $p(x) = c_d x^d + c_{d-1} x^{d-1} + \cdots + c_1 x + c_0$, and A is any $n \times n$ matrix (i.e., a square matrix) then let's interpret p(A) as the $n \times n$ matrix

$$c_d A^d + c_{d-1} A^{d-1} + \dots + c_1 A + c_0 I_n.$$

i.e., since A to any power is still an $n \times n$ matrix, it makes sense to add all these $n \times n$ matrices and get a new matrix. The only thing in the expression which wasn't automatically an $n \times n$ matrix was the "constant term", which is why we added I_n , the $n \times n$ identity matrix.

(a) Show that for any square matrix A, there is some nonzero polynomial p(x) of degree $\leq n^2$ with p(A) = 0 (here 0 means the zero matrix).

(b) If
$$A = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}$$
, find explicitly such a polynomial $p(x)$ of degree ≤ 2

(Later in the course we'll see that we can always find such a polynomial of degree $\leq n$, and that this polynomial says important things about A.)