
Math 110 Homework Assignment 11
due date: Dec. 1, 2004

1. Define a sequence of integers by a0 = 3, a1 = 6, a2 = 14, and for n ≥ 3,

an+3 = 6an+2 − 11an+1 + 6an.

For instance, a3 = 36, since 6a2 − 11a1 + 6a0 = 6(14) − 11(6) + 6(3) = 36, and a4 = 98
since 6a3 − 11a2 + 6a1 = 6(36) − 11(14) + 6(6) = 98.

Find (and prove) a formula for an for all n ≥ 0.

Suggested outline: Solve this in the same way we found a formula for the Fibonacci
numbers. Look at the set V of infinite sequences (x0, x1, x2, x3, . . . . . .) which satisfy
the recursion conditions xn+3 = 6xn+2 − 11xn+1 + 6xn for all n ≥ 0. The sequence
(a0, a1, a2, . . .) is part of this set.

Briefly indicate why V is a subspace of the vector space of all possible sequences, and
explain what its dimension is and why.

Look for elements of V of the form

(1, α, α2, α3, α4, α5, . . . . . .).

Can you find enough elements of this type to form a basis of V ?

If so, you can write the a sequence (which is an element of V ) as a linear combination
of these elements, and then find a formula for an.

2. Polynomial Interpolation:

Let P5 be the vector space of polynomials of degree ≤ 5.

(a) What is the dimension of P5?

Suppose that x1, x1, . . . , x6 are any six distinct real numbers, and y1, y2, . . . , y6 any
real numbers at all. I’d like to prove that there is a unique polynomial p in P5 with
p(x1) = y1, p(x2) = y2, . . . , p(x6) = y6. In other words, that given any six different
x-values, and any six y-values, there is a unique polynomial of degree ≤ 5 with height
yi over xi, i = 1, 2, . . . , 6.

Define a map T : P5 −→ R
6 by

T (p) = (p(x1), p(x2), . . . , p(x6))

i.e., by plugging in x1, through x6.
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(b) Explain why T is a linear map from P5 to R
6.

(c) Explain why the statement “there is a unique p in P5 with p(xi) = yi for i =
1, . . . , 6” is the same as saying that ker(T ) = ~0 and im(T ) = R

6.

(d) Explain why the above is the same as saying that ker(T ) = ~0.

(e) What does it mean in terms of x1, . . . , x6 for a polynomial p to be in ker(T )? By
thinking about factoring, show that ker(T ) = ~0, the zero polynomial.

3.

(a) If T1 : V1 −→ V2 and T2 : V1 −→ V2 are linear transformations between the same
two vector spaces V1 and V2, show that T1 + T2, defined by

(T1 + T2)(f) = T1(f) + T2(f)

for all f in V1 is also a linear transformation from V1 to V2.

(b) If T : V1 −→ V2 is a linear transformation from V1 to V2, and c any number, show
that cT , defined by

(cT )(f) = c(T (f))

for any f in V1 is a linear transformation from V1 to V2.

(c) What parts (a) and (b) show is that, given any two vector spaces V1 and V2, the
set of possible linear transformations from V1 to V2 is also a vector space. If V1 is
R

3, and V2 is R
2, what is the dimension of this vector space, the vector space of

all linear maps from R
3 to R

2?

4. If p(x) is a polynomial of degree d, say p(x) = cdx
d + cd−1x

d−1 + · · ·+ c1x+ c0, and A

is any n× n matrix (i.e., a square matrix) then let’s interpret p(A) as the n× n matrix

cdA
d + cd−1A

d−1 + · · · + c1A + c0In.

i.e., since A to any power is still an n × n matrix, it makes sense to add all these
n × n matrices and get a new matrix. The only thing in the expression which wasn’t
automatically an n× n matrix was the “constant term”, which is why we added In, the
n × n identity matrix.

(a) Show that for any square matrix A, there is some nonzero polynomial p(x) of
degree ≤ n2 with p(A) = 0 (here 0 means the zero matrix).

(b) If A =

[

3 2
1 4

]

, find explicitly such a polynomial p(x) of degree ≤ 2.

(Later in the course we’ll see that we can always find such a polynomial of degree ≤ n,
and that this polynomial says important things about A.)
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