- 1. For the basis $\beta = (3, 5), (1, 2)$ in \mathbb{R}^2 ,
 - Express (4,3), (1,2), and (1,3) in β coordinates.
 - Express $(2,0)_{\beta}$, $(1,1)_{\beta}$, and $(-1,4)_{\beta}$ in the standard coordinates.
- 2. Suppose that $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ is given (in the usual coordinates) by the matrix

$$A = \left[\begin{array}{rrr} 2 & 1 & 5 \\ 1 & 1 & 3 \end{array} \right].$$

If $\beta = (1, 1, 1)$, (2, 0, 1), and (3, 2, 1) is a new basis in \mathbb{R}^3 , and $\alpha = (3, 5)$, (1, 2) a new basis in \mathbb{R}^2 , find the matrix for T with respect to the new basis on both sides.

3. Suppose that $v_1 = (1, 1)$, $v_2 = (1, -1)$, and that the basis β is $\beta = v_1, v_2$.

Let T be the linear transformation from \mathbb{R}^2 to \mathbb{R}^2 given by $T(v_1) = v_1$ and $T(v_2) = \vec{0}$.

- (a) Write down the matrix for β in the new basis β . (You should be able to do this directly from the definition of T).
- (b) Use this to write down the matrix for T in the standard basis.

You might want to compare the answer for (b) with the answer for homework 3, question 4, with m = 1. Can you see why these are the same?

4. Let V be the subspace of the vector space of all functions spanned by $\sin(x)$ and $\cos(x)$, i.e., functions of the form $a\sin(x) + b\cos(x)$. The functions $\sin(x)$ and $\cos(x)$ are a basis for V.

The map $T: V \longrightarrow V$ given by T(f) = f' (i.e., f is mapped to its derivative) is a linear transformation from V to V. Write its matrix in the sin(x), cos(x) basis.