1. Compute each expression

(a)
$$\begin{bmatrix} 3 & 5 & 8 \\ 1 & 2 & -4 \end{bmatrix} + \begin{bmatrix} 4 & 6 & 0 \\ 0 & -3 & 2 \end{bmatrix}$$
 (b) $3 \begin{bmatrix} 1 & -2 \\ -6 & 5 \end{bmatrix}$
(c) $4 \begin{bmatrix} 1 & 0 & 4 \\ 2 & 7 & 3 \end{bmatrix} - 3 \begin{bmatrix} 2 & 1 & 1 \\ 7 & 0 & -2 \end{bmatrix}$ (d) $\begin{bmatrix} 1 & -2 & 5 \\ 2 & 3 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$

2. For parts (a), (b), and (c), answer following questions:

Is \vec{b} a linear combination of \vec{v}_1 , \vec{v}_2 , and \vec{v}_3 ? If so, find all the possible ways to express \vec{b} as a linear combination of those three vectors.

(a)
$$\vec{v}_1 = \begin{bmatrix} 1\\0\\2 \end{bmatrix}$$
, $\vec{v}_2 = \begin{bmatrix} 1\\1\\0 \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} 0\\2\\3 \end{bmatrix}$, and $\vec{b} = \begin{bmatrix} 1\\3\\10 \end{bmatrix}$.
(b) $\vec{v}_1 = \begin{bmatrix} 1\\0\\2 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} 1\\1\\0 \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} 0\\2\\-4 \end{bmatrix}$, and $\vec{b} = \begin{bmatrix} 1\\3\\10 \end{bmatrix}$.
(c) $\vec{v}_1 = \begin{bmatrix} 1\\0\\2 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} 1\\1\\0 \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} 0\\2\\-4 \end{bmatrix}$, and $\vec{b} = \begin{bmatrix} 8\\5\\6 \end{bmatrix}$.

3. Let A be a 4×3 matrix, and let \vec{b} and \vec{c} be two vectors in \mathbb{R}^4 . We are told that the system $A\vec{x} = \vec{b}$ has a unique solution. What can you say about the number of solutions of the system $A\vec{x} = \vec{c}$?

4. Suppose that $\vec{v}_1, \ldots, \vec{v}_4$ are vectors in \mathbb{R}^3 . Form the matrix

$$A = \left[\vec{v}_1 \ \vec{v}_2 \ \vec{v}_3 \ \vec{v}_4 \right]$$

whose columns are the vectors $\vec{v}_1, \ldots \vec{v}_4$. Suppose that

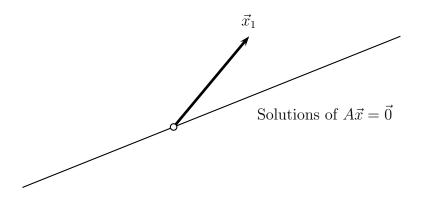
$$\operatorname{RREF}(A) = \left[\begin{array}{rrrr} 1 & 2 & 0 & 1 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 \end{array} \right].$$

- (a) Is \vec{v}_3 a linear combination of \vec{v}_1 and \vec{v}_2 ? If so, with what coefficients?
- (b) Is \vec{v}_4 a linear combination of \vec{v}_1 and \vec{v}_3 ? If so, with what coefficients?
- (c) Is \vec{v}_3 a linear combination of \vec{v}_1 and \vec{v}_4 ? If so, with what coefficients?

What is the principle that allows you to answer these questions? i.e., you don't know what the vectors $\vec{v}_1, \ldots \vec{v}_4$ are, but it's still possible to give exact answers to all these questions. Why?

5. (Problem 48 from §1.3) Consider a solution \vec{x}_1 of the linear system $A\vec{x}_1 = \vec{b}$. Justify the facts stated in parts (a) and (b):

- (a) If \vec{x}_h is a solution of the system $A\vec{x}_h = \vec{0}$, then $\vec{x}_1 + \vec{x}_h$ is a solution of the system $A\vec{x} = b$.
- (b) If \vec{x}_2 is another solution of the system $A\vec{x} = \vec{b}$, then $\vec{x}_2 \vec{x}_1$ is a solution of the system $A\vec{x} = 0$.
- (c) Now suppose that A is a 2×2 matrix. A solution vector \vec{x}_1 of the system $A\vec{x} = \vec{b}$ is shown in the figure below.



We are told that the solutions of the system $A\vec{x} = \vec{0}$ form the line shown in the sketch. Draw the line consisting of all solutions of the system $A\vec{x} = \vec{b}$.

If the problem seems too general, it might help to think of a concrete example like

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}, \quad \vec{b} = \begin{bmatrix} 3 \\ 9 \end{bmatrix}, \text{ and } \vec{x}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$